Cargando…
An uncertainty-aware self-training framework with consistency regularization for the multilabel classification of common computed tomography signs in lung nodules
BACKGROUND: Computed tomography (CT) signs of lung nodules play an important role in indicating lung nodules’ malignancy, and accurate automatic classification of these signs can help doctors improve their diagnostic efficiency. However, few relevant studies targeting multilabel classification (MLC)...
Autores principales: | Zhan, Ketian, Wang, Yunpeng, Zhuo, Yaoyao, Zhan, Yi, Yan, Qinqin, Shan, Fei, Zhou, Lingxiao, Chen, Xinrong, Liu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498222/ https://www.ncbi.nlm.nih.gov/pubmed/37711798 http://dx.doi.org/10.21037/qims-23-40 |
Ejemplares similares
-
Multilabel classification: problem analysis, metrics and techniques
por: Charte, Francisco, et al.
Publicado: (2016) -
An Ensemble Multilabel Classification for Disease Risk Prediction
por: Li, Runzhi, et al.
Publicado: (2017) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
On Multilabel Classification Methods of Incompletely Labeled Biomedical Text Data
por: Kolesov, Anton, et al.
Publicado: (2014) -
Multilabel user classification using the community structure of online networks
por: Rizos, Georgios, et al.
Publicado: (2017)