Cargando…
Development of a novel tumor microenvironment-related radiogenomics model for prognosis prediction in hepatocellular carcinoma
BACKGROUND: The tumour microenvironment (TME) has occupied a potent position in the tumorigenesis and tumor progression of hepatocellular carcinoma (HCC). Radiogenomics is an emerging field that integrates imaging and genetic information, thus offering a novel class of non-invasive biomarkers with d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498241/ https://www.ncbi.nlm.nih.gov/pubmed/37711809 http://dx.doi.org/10.21037/qims-22-840 |
Sumario: | BACKGROUND: The tumour microenvironment (TME) has occupied a potent position in the tumorigenesis and tumor progression of hepatocellular carcinoma (HCC). Radiogenomics is an emerging field that integrates imaging and genetic information, thus offering a novel class of non-invasive biomarkers with diagnostic, prognostic, and treatment response. However, optimal evaluation methodologies for radiogenomics in patients with HCC have not been well established. Therefore, this study aims to develop a radiogenomics models, associating contrast-enhanced computed tomography (CECT) based radiomics features and transcriptomics data with TME, to increase predictive precision for overall survival (OS) in patients with HCC. METHODS: Transcriptome profiles of 365 patients with HCC from The Cancer Genome Atlas (TCGA)-HCC cohort were used to obtain TME-related genes by differential expression analysis. TME-related radiomics features of 53 patients with HCC from The Cancer Imaging Archive (TCIA)-HCC cohort matched with the TCGA-HCC cohort were screened via correlation analysis. Furthermore, a radiogenomics score-based prognostic model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis in the TCIA-HCC cohort. Finally, the ability to predict prognosis and the value of the model in identifying the abundance of immune cell infiltration were investigated. RESULTS: A radiogenomics prognostic model was developed, which incorporated 1 radiomics feature [original_gray-level co-occurrence matrix (glcm)_inverse difference normalized (Idn)] and 3 genes [spen paralogue and orthologue C‑terminal domain containing 1 (SPOCD1); killer cell lectin like receptor B1 (KLRB1); G protein-coupled receptor 182 (GPR182)]. The model performed satisfactorily in the training and test sets [1-year, 2-year, 3-year area under the curve (AUC) of 0.81, 0.85 and 0.87 in the training set, respectively; and 0.73, 0.83, and 0.84 in the test set, respectively]. Moreover, the model showed that higher radiogenomics scores were associated with worse OS and lower levels of immune infiltration. CONCLUSIONS: The novel CECT-based radiogenomics model may provide valuable insights for prognostic stratification and TME assessment of patients with HCC. |
---|