Cargando…
TGPred: efficient methods for predicting target genes of a transcription factor by integrating statistics, machine learning and optimization
Four statistical selection methods for inferring transcription factor (TF)–target gene (TG) pairs were developed by coupling mean squared error (MSE) or Huber loss function, with elastic net (ENET) or least absolute shrinkage and selection operator (Lasso) penalty. Two methods were also developed fo...
Autores principales: | Cao, Xuewei, Zhang, Ling, Islam, Md Khairul, Zhao, Mingxia, He, Cheng, Zhang, Kui, Liu, Sanzhen, Sha, Qiuying, Wei, Hairong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498345/ https://www.ncbi.nlm.nih.gov/pubmed/37711605 http://dx.doi.org/10.1093/nargab/lqad083 |
Ejemplares similares
-
TGPred: a tumor gene prediction webserver for analyzing structural and functional impacts of variants
por: Liu, Jixiang, et al.
Publicado: (2020) -
HCLC-FC: A novel statistical method for phenome-wide association studies
por: Liang, Xiaoyu, et al.
Publicado: (2022) -
Gene-based association tests using GWAS summary statistics and incorporating eQTL
por: Cao, Xuewei, et al.
Publicado: (2022) -
A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics
por: Wang, Meida, et al.
Publicado: (2023) -
TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction
por: Gunasekara, Chathura, et al.
Publicado: (2018)