Cargando…

Anticancer potential of Bacillus coagulans MZY531 on mouse H22 hepatocellular carcinoma cells via anti-proliferation and apoptosis induction

Bacillus coagulans have recently revealed its anticancer effects, but few investigations are available on their effects on liver cancer proliferation, and the precise mechanism to mark its impact on apoptosis-related signaling pathways has yet to be elucidated. The aim of this study was to evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Zhongwei, Yang, Qian, Zhou, Tingting, Liu, Chunhong, Sun, Manqing, Cui, Xinmu, Zhang, Xuewu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498517/
https://www.ncbi.nlm.nih.gov/pubmed/37705007
http://dx.doi.org/10.1186/s12906-023-04120-7
Descripción
Sumario:Bacillus coagulans have recently revealed its anticancer effects, but few investigations are available on their effects on liver cancer proliferation, and the precise mechanism to mark its impact on apoptosis-related signaling pathways has yet to be elucidated. The aim of this study was to evaluate the anti-proliferative effect of B. coagulans MZY531 and apoptosis induction in the mouse H22 hepatocellular carcinoma cell line. The anti-proliferative activity of B. coagulans MZY531 was evaluated by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis was revealed with Terminal Deoxynucleotidyl Transferase (TDT)-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometric analysis. The expressions of apoptosis-related protein were determined by western blot analysis. The CCK-8 assay revealed that B. coagulans MZY531 inhibited the H22 cells proliferation in a concentration-dependent manner. TUNEL staining revealed an increased apoptosis rate in H22 cells following intervention with B. coagulans MZY531. Furthermore, flow cytometric analysis showed that B. coagulans MZY531 treatment (MOI = 50 and 100) significantly alleviated the H22 cells apoptosis compared with the control group. Western blot analysis found B. coagulans MZY531 significantly decreased level of phospho-PI3K (p-PI3K), phospho-AKT (p-AKT), and phospho-mTOR (p-mTOR) compared with the control group. Furthermore, H22 cells treatment with B. coagulans MZY531 enhanced the expression of caspase-3 and Bax and jeopardized the expression of Bcl-2. Taken together, apoptosis induction and cell proliferation inhibition via PI3K/AKT/mTOR and Bax/Bcl-2/Caspase-3 pathway are promising evidence to support B. coagulans MZY531 as a potential therapeutic agent for cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12906-023-04120-7.