Cargando…

Predicting molecular vibronic spectra using time-domain analog quantum simulation

Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computati...

Descripción completa

Detalles Bibliográficos
Autores principales: MacDonell, Ryan J., Navickas, Tomas, Wohlers-Reichel, Tim F., Valahu, Christophe H., Rao, Arjun D., Millican, Maverick J., Currington, Michael A., Biercuk, Michael J., Tan, Ting Rei, Hempel, Cornelius, Kassal, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498668/
https://www.ncbi.nlm.nih.gov/pubmed/37712022
http://dx.doi.org/10.1039/d3sc02453a
_version_ 1785105572497981440
author MacDonell, Ryan J.
Navickas, Tomas
Wohlers-Reichel, Tim F.
Valahu, Christophe H.
Rao, Arjun D.
Millican, Maverick J.
Currington, Michael A.
Biercuk, Michael J.
Tan, Ting Rei
Hempel, Cornelius
Kassal, Ivan
author_facet MacDonell, Ryan J.
Navickas, Tomas
Wohlers-Reichel, Tim F.
Valahu, Christophe H.
Rao, Arjun D.
Millican, Maverick J.
Currington, Michael A.
Biercuk, Michael J.
Tan, Ting Rei
Hempel, Cornelius
Kassal, Ivan
author_sort MacDonell, Ryan J.
collection PubMed
description Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach whose cost grows exponentially with molecule size. Here, we introduce a method for scalable analog quantum simulation of molecular spectroscopy: by performing simulations in the time domain, the number of required measurements depends on the desired spectral range and resolution, not molecular size. Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems with minimal overhead. We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic photoelectron spectrum of SO(2).
format Online
Article
Text
id pubmed-10498668
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-104986682023-09-14 Predicting molecular vibronic spectra using time-domain analog quantum simulation MacDonell, Ryan J. Navickas, Tomas Wohlers-Reichel, Tim F. Valahu, Christophe H. Rao, Arjun D. Millican, Maverick J. Currington, Michael A. Biercuk, Michael J. Tan, Ting Rei Hempel, Cornelius Kassal, Ivan Chem Sci Chemistry Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach whose cost grows exponentially with molecule size. Here, we introduce a method for scalable analog quantum simulation of molecular spectroscopy: by performing simulations in the time domain, the number of required measurements depends on the desired spectral range and resolution, not molecular size. Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems with minimal overhead. We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic photoelectron spectrum of SO(2). The Royal Society of Chemistry 2023-08-10 /pmc/articles/PMC10498668/ /pubmed/37712022 http://dx.doi.org/10.1039/d3sc02453a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
MacDonell, Ryan J.
Navickas, Tomas
Wohlers-Reichel, Tim F.
Valahu, Christophe H.
Rao, Arjun D.
Millican, Maverick J.
Currington, Michael A.
Biercuk, Michael J.
Tan, Ting Rei
Hempel, Cornelius
Kassal, Ivan
Predicting molecular vibronic spectra using time-domain analog quantum simulation
title Predicting molecular vibronic spectra using time-domain analog quantum simulation
title_full Predicting molecular vibronic spectra using time-domain analog quantum simulation
title_fullStr Predicting molecular vibronic spectra using time-domain analog quantum simulation
title_full_unstemmed Predicting molecular vibronic spectra using time-domain analog quantum simulation
title_short Predicting molecular vibronic spectra using time-domain analog quantum simulation
title_sort predicting molecular vibronic spectra using time-domain analog quantum simulation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498668/
https://www.ncbi.nlm.nih.gov/pubmed/37712022
http://dx.doi.org/10.1039/d3sc02453a
work_keys_str_mv AT macdonellryanj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT navickastomas predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT wohlersreicheltimf predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT valahuchristopheh predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT raoarjund predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT millicanmaverickj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT curringtonmichaela predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT biercukmichaelj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT tantingrei predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT hempelcornelius predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation
AT kassalivan predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation