Cargando…
Predicting molecular vibronic spectra using time-domain analog quantum simulation
Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computati...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498668/ https://www.ncbi.nlm.nih.gov/pubmed/37712022 http://dx.doi.org/10.1039/d3sc02453a |
_version_ | 1785105572497981440 |
---|---|
author | MacDonell, Ryan J. Navickas, Tomas Wohlers-Reichel, Tim F. Valahu, Christophe H. Rao, Arjun D. Millican, Maverick J. Currington, Michael A. Biercuk, Michael J. Tan, Ting Rei Hempel, Cornelius Kassal, Ivan |
author_facet | MacDonell, Ryan J. Navickas, Tomas Wohlers-Reichel, Tim F. Valahu, Christophe H. Rao, Arjun D. Millican, Maverick J. Currington, Michael A. Biercuk, Michael J. Tan, Ting Rei Hempel, Cornelius Kassal, Ivan |
author_sort | MacDonell, Ryan J. |
collection | PubMed |
description | Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach whose cost grows exponentially with molecule size. Here, we introduce a method for scalable analog quantum simulation of molecular spectroscopy: by performing simulations in the time domain, the number of required measurements depends on the desired spectral range and resolution, not molecular size. Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems with minimal overhead. We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic photoelectron spectrum of SO(2). |
format | Online Article Text |
id | pubmed-10498668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104986682023-09-14 Predicting molecular vibronic spectra using time-domain analog quantum simulation MacDonell, Ryan J. Navickas, Tomas Wohlers-Reichel, Tim F. Valahu, Christophe H. Rao, Arjun D. Millican, Maverick J. Currington, Michael A. Biercuk, Michael J. Tan, Ting Rei Hempel, Cornelius Kassal, Ivan Chem Sci Chemistry Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular spectra accurately is computationally difficult because of the presence of entanglement between electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this computational cost, existing quantum approaches rely on combining signals from individual eigenstates, an approach whose cost grows exponentially with molecule size. Here, we introduce a method for scalable analog quantum simulation of molecular spectroscopy: by performing simulations in the time domain, the number of required measurements depends on the desired spectral range and resolution, not molecular size. Our approach can treat more complicated molecular models than previous ones, requires fewer approximations, and can be extended to open quantum systems with minimal overhead. We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic photoelectron spectrum of SO(2). The Royal Society of Chemistry 2023-08-10 /pmc/articles/PMC10498668/ /pubmed/37712022 http://dx.doi.org/10.1039/d3sc02453a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry MacDonell, Ryan J. Navickas, Tomas Wohlers-Reichel, Tim F. Valahu, Christophe H. Rao, Arjun D. Millican, Maverick J. Currington, Michael A. Biercuk, Michael J. Tan, Ting Rei Hempel, Cornelius Kassal, Ivan Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title | Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title_full | Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title_fullStr | Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title_full_unstemmed | Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title_short | Predicting molecular vibronic spectra using time-domain analog quantum simulation |
title_sort | predicting molecular vibronic spectra using time-domain analog quantum simulation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498668/ https://www.ncbi.nlm.nih.gov/pubmed/37712022 http://dx.doi.org/10.1039/d3sc02453a |
work_keys_str_mv | AT macdonellryanj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT navickastomas predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT wohlersreicheltimf predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT valahuchristopheh predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT raoarjund predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT millicanmaverickj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT curringtonmichaela predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT biercukmichaelj predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT tantingrei predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT hempelcornelius predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation AT kassalivan predictingmolecularvibronicspectrausingtimedomainanalogquantumsimulation |