Cargando…
Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers
Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these ar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498680/ https://www.ncbi.nlm.nih.gov/pubmed/37712019 http://dx.doi.org/10.1039/d3sc03000h |
_version_ | 1785105575213793280 |
---|---|
author | Dang, Vinh Q. Teets, Thomas S. |
author_facet | Dang, Vinh Q. Teets, Thomas S. |
author_sort | Dang, Vinh Q. |
collection | PubMed |
description | Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C–C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped. |
format | Online Article Text |
id | pubmed-10498680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104986802023-09-14 Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers Dang, Vinh Q. Teets, Thomas S. Chem Sci Chemistry Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C–C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped. The Royal Society of Chemistry 2023-08-18 /pmc/articles/PMC10498680/ /pubmed/37712019 http://dx.doi.org/10.1039/d3sc03000h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Dang, Vinh Q. Teets, Thomas S. Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title | Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title_full | Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title_fullStr | Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title_full_unstemmed | Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title_short | Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
title_sort | reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498680/ https://www.ncbi.nlm.nih.gov/pubmed/37712019 http://dx.doi.org/10.1039/d3sc03000h |
work_keys_str_mv | AT dangvinhq reductivephotoredoxtransformationsofcarbonylderivativesenabledbystronglyreducingphotosensitizers AT teetsthomass reductivephotoredoxtransformationsofcarbonylderivativesenabledbystronglyreducingphotosensitizers |