Cargando…
Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
BACKGROUND: Radiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classification algorithm for prediction of a clinical...
Autores principales: | Huynh, Bao Ngoc, Groendahl, Aurora Rosvoll, Tomic, Oliver, Liland, Kristian Hovde, Knudtsen, Ingerid Skjei, Hoebers, Frank, van Elmpt, Wouter, Malinen, Eirik, Dale, Einar, Futsaether, Cecilia Marie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498924/ https://www.ncbi.nlm.nih.gov/pubmed/37711738 http://dx.doi.org/10.3389/fmed.2023.1217037 |
Ejemplares similares
-
Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning
por: Groendahl, Aurora Rosvoll, et al.
Publicado: (2023) -
Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients
por: Moe, Yngve Mardal, et al.
Publicado: (2021) -
Positron emission tomography guided dose painting by numbers of lung cancer: Alanine dosimetry in an anthropomorphic phantom
por: Papoutsis, Iosif, et al.
Publicado: (2022) -
Assessment of pulmonary (18)F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib
por: Abravan, Azadeh, et al.
Publicado: (2017) -
Pelvic PET/MR attenuation correction in the image space using deep learning
por: Abrahamsen, Bendik Skarre, et al.
Publicado: (2023)