Cargando…
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
Artificial intelligence-powered protein structure prediction methods have led to a paradigm-shift in computational structural biology, yet contemporary approaches for predicting the interfacial residues (i.e., sites) of protein-protein interaction (PPI) still rely on experimental structures. Recent...
Autores principales: | Roche, Rahmatullah, Moussad, Bernard, Shuvo, Md Hossain, Bhattacharya, Debswapna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499216/ https://www.ncbi.nlm.nih.gov/pubmed/37651442 http://dx.doi.org/10.1371/journal.pcbi.1011435 |
Ejemplares similares
-
EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks
por: Roche, Rahmatullah, et al.
Publicado: (2023) -
PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023) -
PIQLE: protein–protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023) -
The transformative power of transformers in protein structure prediction
por: Moussad, Bernard, et al.
Publicado: (2023) -
Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading
por: Bhattacharya, Sutanu, et al.
Publicado: (2021)