Cargando…
A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499221/ https://www.ncbi.nlm.nih.gov/pubmed/37651466 http://dx.doi.org/10.1371/journal.ppat.1011614 |
_version_ | 1785105660873015296 |
---|---|
author | Taha, Taha Y. Suryawanshi, Rahul K. Chen, Irene P. Correy, Galen J. McCavitt-Malvido, Maria O’Leary, Patrick C. Jogalekar, Manasi P. Diolaiti, Morgan E. Kimmerly, Gabriella R. Tsou, Chia-Lin Gascon, Ronnie Montano, Mauricio Martinez-Sobrido, Luis Krogan, Nevan J. Ashworth, Alan Fraser, James S. Ott, Melanie |
author_facet | Taha, Taha Y. Suryawanshi, Rahul K. Chen, Irene P. Correy, Galen J. McCavitt-Malvido, Maria O’Leary, Patrick C. Jogalekar, Manasi P. Diolaiti, Morgan E. Kimmerly, Gabriella R. Tsou, Chia-Lin Gascon, Ronnie Montano, Mauricio Martinez-Sobrido, Luis Krogan, Nevan J. Ashworth, Alan Fraser, James S. Ott, Melanie |
author_sort | Taha, Taha Y. |
collection | PubMed |
description | Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals. |
format | Online Article Text |
id | pubmed-10499221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104992212023-09-14 A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo Taha, Taha Y. Suryawanshi, Rahul K. Chen, Irene P. Correy, Galen J. McCavitt-Malvido, Maria O’Leary, Patrick C. Jogalekar, Manasi P. Diolaiti, Morgan E. Kimmerly, Gabriella R. Tsou, Chia-Lin Gascon, Ronnie Montano, Mauricio Martinez-Sobrido, Luis Krogan, Nevan J. Ashworth, Alan Fraser, James S. Ott, Melanie PLoS Pathog Research Article Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals. Public Library of Science 2023-08-31 /pmc/articles/PMC10499221/ /pubmed/37651466 http://dx.doi.org/10.1371/journal.ppat.1011614 Text en © 2023 Taha et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Taha, Taha Y. Suryawanshi, Rahul K. Chen, Irene P. Correy, Galen J. McCavitt-Malvido, Maria O’Leary, Patrick C. Jogalekar, Manasi P. Diolaiti, Morgan E. Kimmerly, Gabriella R. Tsou, Chia-Lin Gascon, Ronnie Montano, Mauricio Martinez-Sobrido, Luis Krogan, Nevan J. Ashworth, Alan Fraser, James S. Ott, Melanie A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title | A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title_full | A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title_fullStr | A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title_full_unstemmed | A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title_short | A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo |
title_sort | single inactivating amino acid change in the sars-cov-2 nsp3 mac1 domain attenuates viral replication in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499221/ https://www.ncbi.nlm.nih.gov/pubmed/37651466 http://dx.doi.org/10.1371/journal.ppat.1011614 |
work_keys_str_mv | AT tahatahay asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT suryawanshirahulk asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT chenirenep asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT correygalenj asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT mccavittmalvidomaria asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT olearypatrickc asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT jogalekarmanasip asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT diolaitimorgane asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT kimmerlygabriellar asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT tsouchialin asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT gasconronnie asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT montanomauricio asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT martinezsobridoluis asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT krogannevanj asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT ashworthalan asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT fraserjamess asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT ottmelanie asingleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT tahatahay singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT suryawanshirahulk singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT chenirenep singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT correygalenj singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT mccavittmalvidomaria singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT olearypatrickc singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT jogalekarmanasip singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT diolaitimorgane singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT kimmerlygabriellar singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT tsouchialin singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT gasconronnie singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT montanomauricio singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT martinezsobridoluis singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT krogannevanj singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT ashworthalan singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT fraserjamess singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo AT ottmelanie singleinactivatingaminoacidchangeinthesarscov2nsp3mac1domainattenuatesviralreplicationinvivo |