Cargando…
Biomaterials are the key to unlock spheroid function and therapeutic potential
Spheroids are three-dimensional cell aggregates that mimic fundamental aspects of the native tissue microenvironment better than single cells, making them a promising platform for the study of tissue development and therapeutics. Spheroids have been investigated for decades as models in cancer resea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499638/ https://www.ncbi.nlm.nih.gov/pubmed/37720486 http://dx.doi.org/10.1016/j.bbiosy.2023.100080 |
Sumario: | Spheroids are three-dimensional cell aggregates that mimic fundamental aspects of the native tissue microenvironment better than single cells, making them a promising platform for the study of tissue development and therapeutics. Spheroids have been investigated for decades as models in cancer research, yet we have only just scratched the surface of their potential clinical utility in cell-based therapies. Like many cells, spheroids commonly exhibit a loss of key attributes upon implantation, motivating the need for strategies to regulate their function in situ. Biomaterials offer numerous opportunities to preserve spheroid function and guide spheroid behavior by tailoring the local microenvironment. |
---|