Cargando…
Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors
OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikre...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499706/ https://www.ncbi.nlm.nih.gov/pubmed/37464053 http://dx.doi.org/10.1007/s00011-023-01766-4 |
_version_ | 1785105764260511744 |
---|---|
author | Martins, Leonardo Amorim, Weslley Wallace Gregnani, Marcos Fernandes de Carvalho Araújo, Ronaldo Qadri, Fatimunnisa Bader, Michael Pesquero, João Bosco |
author_facet | Martins, Leonardo Amorim, Weslley Wallace Gregnani, Marcos Fernandes de Carvalho Araújo, Ronaldo Qadri, Fatimunnisa Bader, Michael Pesquero, João Bosco |
author_sort | Martins, Leonardo |
collection | PubMed |
description | OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00011-023-01766-4. |
format | Online Article Text |
id | pubmed-10499706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-104997062023-09-15 Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors Martins, Leonardo Amorim, Weslley Wallace Gregnani, Marcos Fernandes de Carvalho Araújo, Ronaldo Qadri, Fatimunnisa Bader, Michael Pesquero, João Bosco Inflamm Res Original Research Paper OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00011-023-01766-4. Springer International Publishing 2023-07-18 2023 /pmc/articles/PMC10499706/ /pubmed/37464053 http://dx.doi.org/10.1007/s00011-023-01766-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Research Paper Martins, Leonardo Amorim, Weslley Wallace Gregnani, Marcos Fernandes de Carvalho Araújo, Ronaldo Qadri, Fatimunnisa Bader, Michael Pesquero, João Bosco Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title | Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title_full | Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title_fullStr | Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title_full_unstemmed | Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title_short | Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors |
title_sort | kinin receptors regulate skeletal muscle regeneration: differential effects for b1 and b2 receptors |
topic | Original Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499706/ https://www.ncbi.nlm.nih.gov/pubmed/37464053 http://dx.doi.org/10.1007/s00011-023-01766-4 |
work_keys_str_mv | AT martinsleonardo kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT amorimweslleywallace kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT gregnanimarcosfernandes kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT decarvalhoaraujoronaldo kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT qadrifatimunnisa kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT badermichael kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors AT pesquerojoaobosco kininreceptorsregulateskeletalmuscleregenerationdifferentialeffectsforb1andb2receptors |