Cargando…

ECMO PAL: using deep neural networks for survival prediction in venoarterial extracorporeal membrane oxygenation

PURPOSE: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is a complex and high-risk life support modality used in severe cardiorespiratory failure. ECMO survival scores are used clinically for patient prognostication and outcomes risk adjustment. This study aims to create the first artifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephens, Andrew F., Šeman, Michael, Diehl, Arne, Pilcher, David, Barbaro, Ryan P., Brodie, Daniel, Pellegrino, Vincent, Kaye, David M., Gregory, Shaun D., Hodgson, Carol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499722/
https://www.ncbi.nlm.nih.gov/pubmed/37548758
http://dx.doi.org/10.1007/s00134-023-07157-x
Descripción
Sumario:PURPOSE: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is a complex and high-risk life support modality used in severe cardiorespiratory failure. ECMO survival scores are used clinically for patient prognostication and outcomes risk adjustment. This study aims to create the first artificial intelligence (AI)-driven ECMO survival score to predict in-hospital mortality based on a large international patient cohort. METHODS: A deep neural network, ECMO Predictive Algorithm (ECMO PAL) was trained on a retrospective cohort of 18,167 patients from the international Extracorporeal Life Support Organisation (ELSO) registry (2017–2020), and performance was measured using fivefold cross-validation. External validation was performed on all adult registry patients from 2021 (N = 5015) and compared against existing prognostication scores: SAVE, Modified SAVE, and ECMO ACCEPTS for predicting in-hospital mortality. RESULTS: Mean age was 56.8 ± 15.1 years, with 66.7% of patients being male and 50.2% having a pre-ECMO cardiac arrest. Cross-validation demonstrated an inhospital mortality sensitivity and precision of 82.1 ± 0.2% and 77.6 ± 0.2%, respectively. Validation accuracy was only 2.8% lower than training accuracy, reducing from 75.5% to 72.7% [99% confidence interval (CI) 71.1–74.3%]. ECMO PAL accuracy outperformed the ECMO ACCEPTS (54.7%), SAVE (61.1%), and Modified SAVE (62%) scores. CONCLUSIONS: ECMO PAL is the first AI-powered ECMO survival score trained and validated on large international patient cohorts. ECMO PAL demonstrated high generalisability across ECMO regions and outperformed existing, widely used scores. Beyond ECMO, this study highlights how large international registry data can be leveraged for AI prognostication for complex critical care therapies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00134-023-07157-x.