Cargando…
A framework for FAIR robotic datasets
It is essential to publish and make available environmental data gathered by emerging robotic platforms to contribute to the Global Ocean Observing System (GOOS), supported by the United Nations - Decade of Ocean Science for Sustainable Development (2021–2030). The transparency of these unique obser...
Autores principales: | Motta, Corrado, Aracri, Simona, Ferretti, Roberta, Bibuli, Marco, Bruzzone, Gabriele, Caccia, Massimo, Odetti, Angelo, Ferreira, Fausto, de Pascalis, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499808/ https://www.ncbi.nlm.nih.gov/pubmed/37704657 http://dx.doi.org/10.1038/s41597-023-02495-3 |
Ejemplares similares
-
Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project †
por: Lambertini, Alessandro, et al.
Publicado: (2022) -
Cost-Effective Technologies to Study the Arctic Ocean Environment †
por: Piermattei, Viviana, et al.
Publicado: (2018) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
Editorial: Advanced Control Methods in Marine Robotics Applications
por: Bonsignorio, Fabio, et al.
Publicado: (2021) -
A General Framework for Fair Regression
por: Fitzsimons, Jack, et al.
Publicado: (2019)