Cargando…

Evaluating progress in automatic chest X-ray radiology report generation

Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Feiyang, Endo, Mark, Krishnan, Rayan, Pan, Ian, Tsai, Andy, Reis, Eduardo Pontes, Fonseca, Eduardo Kaiser Ururahy Nunes, Lee, Henrique Min Ho, Abad, Zahra Shakeri Hossein, Ng, Andrew Y., Langlotz, Curtis P., Venugopal, Vasantha Kumar, Rajpurkar, Pranav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499844/
https://www.ncbi.nlm.nih.gov/pubmed/37720336
http://dx.doi.org/10.1016/j.patter.2023.100802
_version_ 1785105797580062720
author Yu, Feiyang
Endo, Mark
Krishnan, Rayan
Pan, Ian
Tsai, Andy
Reis, Eduardo Pontes
Fonseca, Eduardo Kaiser Ururahy Nunes
Lee, Henrique Min Ho
Abad, Zahra Shakeri Hossein
Ng, Andrew Y.
Langlotz, Curtis P.
Venugopal, Vasantha Kumar
Rajpurkar, Pranav
author_facet Yu, Feiyang
Endo, Mark
Krishnan, Rayan
Pan, Ian
Tsai, Andy
Reis, Eduardo Pontes
Fonseca, Eduardo Kaiser Ururahy Nunes
Lee, Henrique Min Ho
Abad, Zahra Shakeri Hossein
Ng, Andrew Y.
Langlotz, Curtis P.
Venugopal, Vasantha Kumar
Rajpurkar, Pranav
author_sort Yu, Feiyang
collection PubMed
description Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differences. In this study, we investigate the alignment between automated metrics and radiologists' scoring of errors in report generation. We address the limitations of existing metrics by proposing new metrics, RadGraph F1 and RadCliQ, which demonstrate stronger correlation with radiologists' evaluations. In addition, we analyze the failure modes of the metrics to understand their limitations and provide guidance for metric selection and interpretation. This study establishes RadGraph F1 and RadCliQ as meaningful metrics for guiding future research in radiology report generation.
format Online
Article
Text
id pubmed-10499844
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104998442023-09-15 Evaluating progress in automatic chest X-ray radiology report generation Yu, Feiyang Endo, Mark Krishnan, Rayan Pan, Ian Tsai, Andy Reis, Eduardo Pontes Fonseca, Eduardo Kaiser Ururahy Nunes Lee, Henrique Min Ho Abad, Zahra Shakeri Hossein Ng, Andrew Y. Langlotz, Curtis P. Venugopal, Vasantha Kumar Rajpurkar, Pranav Patterns (N Y) Article Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differences. In this study, we investigate the alignment between automated metrics and radiologists' scoring of errors in report generation. We address the limitations of existing metrics by proposing new metrics, RadGraph F1 and RadCliQ, which demonstrate stronger correlation with radiologists' evaluations. In addition, we analyze the failure modes of the metrics to understand their limitations and provide guidance for metric selection and interpretation. This study establishes RadGraph F1 and RadCliQ as meaningful metrics for guiding future research in radiology report generation. Elsevier 2023-08-03 /pmc/articles/PMC10499844/ /pubmed/37720336 http://dx.doi.org/10.1016/j.patter.2023.100802 Text en © 2023. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yu, Feiyang
Endo, Mark
Krishnan, Rayan
Pan, Ian
Tsai, Andy
Reis, Eduardo Pontes
Fonseca, Eduardo Kaiser Ururahy Nunes
Lee, Henrique Min Ho
Abad, Zahra Shakeri Hossein
Ng, Andrew Y.
Langlotz, Curtis P.
Venugopal, Vasantha Kumar
Rajpurkar, Pranav
Evaluating progress in automatic chest X-ray radiology report generation
title Evaluating progress in automatic chest X-ray radiology report generation
title_full Evaluating progress in automatic chest X-ray radiology report generation
title_fullStr Evaluating progress in automatic chest X-ray radiology report generation
title_full_unstemmed Evaluating progress in automatic chest X-ray radiology report generation
title_short Evaluating progress in automatic chest X-ray radiology report generation
title_sort evaluating progress in automatic chest x-ray radiology report generation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499844/
https://www.ncbi.nlm.nih.gov/pubmed/37720336
http://dx.doi.org/10.1016/j.patter.2023.100802
work_keys_str_mv AT yufeiyang evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT endomark evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT krishnanrayan evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT panian evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT tsaiandy evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT reiseduardopontes evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT fonsecaeduardokaiserururahynunes evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT leehenriqueminho evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT abadzahrashakerihossein evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT ngandrewy evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT langlotzcurtisp evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT venugopalvasanthakumar evaluatingprogressinautomaticchestxrayradiologyreportgeneration
AT rajpurkarpranav evaluatingprogressinautomaticchestxrayradiologyreportgeneration