Cargando…
Evaluating progress in automatic chest X-ray radiology report generation
Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differ...
Autores principales: | Yu, Feiyang, Endo, Mark, Krishnan, Rayan, Pan, Ian, Tsai, Andy, Reis, Eduardo Pontes, Fonseca, Eduardo Kaiser Ururahy Nunes, Lee, Henrique Min Ho, Abad, Zahra Shakeri Hossein, Ng, Andrew Y., Langlotz, Curtis P., Venugopal, Vasantha Kumar, Rajpurkar, Pranav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499844/ https://www.ncbi.nlm.nih.gov/pubmed/37720336 http://dx.doi.org/10.1016/j.patter.2023.100802 |
Ejemplares similares
-
Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning
por: Tiu, Ekin, et al.
Publicado: (2022) -
Avascular necrosis: radiological findings and main sites of
involvement - pictorial essay
por: Enge Junior, Dair Jocely, et al.
Publicado: (2019) -
Predicting patient decompensation from continuous physiologic monitoring in the emergency department
por: Sundrani, Sameer, et al.
Publicado: (2023) -
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Automated Detection of Radiology Reports that Document Non-routine Communication of Critical or Significant Results
por: Lakhani, Paras, et al.
Publicado: (2009)