Cargando…
Stable clinical risk prediction against distribution shift in electronic health records
The availability of large-scale electronic health record datasets has led to the development of artificial intelligence (AI) methods for clinical risk prediction that help improve patient care. However, existing studies have shown that AI models suffer from severe performance decay after several yea...
Autores principales: | Lee, Seungyeon, Yin, Changchang, Zhang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499849/ https://www.ncbi.nlm.nih.gov/pubmed/37720334 http://dx.doi.org/10.1016/j.patter.2023.100828 |
Ejemplares similares
-
Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach
por: Li, Rui, et al.
Publicado: (2020) -
Using electronic health records to predict costs and outcomes in stable coronary artery disease
por: Asaria, Miqdad, et al.
Publicado: (2016) -
Multimodal Risk Prediction with Physiological Signals, Medical Images and Clinical Notes
por: Wang, Yuanlong, et al.
Publicado: (2023) -
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts
por: Li, Yikuan, et al.
Publicado: (2022) -
Representation learning for clinical time series prediction tasks in electronic health records
por: Ruan, Tong, et al.
Publicado: (2019)