Cargando…

Leakage and the reproducibility crisis in machine-learning-based science

Machine-learning (ML) methods have gained prominence in the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. We systematically investigate reproducibility issues in ML-based science. Through a survey of literature in fields th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kapoor, Sayash, Narayanan, Arvind
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499856/
https://www.ncbi.nlm.nih.gov/pubmed/37720327
http://dx.doi.org/10.1016/j.patter.2023.100804
Descripción
Sumario:Machine-learning (ML) methods have gained prominence in the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. We systematically investigate reproducibility issues in ML-based science. Through a survey of literature in fields that have adopted ML methods, we find 17 fields where leakage has been found, collectively affecting 294 papers and, in some cases, leading to wildly overoptimistic conclusions. Based on our survey, we introduce a detailed taxonomy of eight types of leakage, ranging from textbook errors to open research problems. We propose that researchers test for each type of leakage by filling out model info sheets, which we introduce. Finally, we conduct a reproducibility study of civil war prediction, where complex ML models are believed to vastly outperform traditional statistical models such as logistic regression (LR). When the errors are corrected, complex ML models do not perform substantively better than decades-old LR models.