Cargando…
Leakage and the reproducibility crisis in machine-learning-based science
Machine-learning (ML) methods have gained prominence in the quantitative sciences. However, there are many known methodological pitfalls, including data leakage, in ML-based science. We systematically investigate reproducibility issues in ML-based science. Through a survey of literature in fields th...
Autores principales: | Kapoor, Sayash, Narayanan, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499856/ https://www.ncbi.nlm.nih.gov/pubmed/37720327 http://dx.doi.org/10.1016/j.patter.2023.100804 |
Ejemplares similares
-
The limitations of machine learning models for predicting scientific replicability
por: Crockett, M. J., et al.
Publicado: (2023) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Stop Reproducing the Reproducibility Crisis
por: Bernard, Christophe
Publicado: (2023) -
No raw data, no science: another possible source of the reproducibility crisis
por: Miyakawa, Tsuyoshi
Publicado: (2020) -
The Epistemological (Not Reproducibility) Crisis
por: Park, John
Publicado: (2020)