Cargando…
AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOL...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499858/ https://www.ncbi.nlm.nih.gov/pubmed/37720337 http://dx.doi.org/10.1016/j.patter.2023.100806 |
Sumario: | Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic accuracy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment. |
---|