Cargando…

AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images

Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOL...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ruicun, Liu, Tuoyu, Dan, Tingting, Yang, Shan, Li, Yanbing, Luo, Boyu, Zhuang, Yingtan, Fan, Xinyue, Zhang, Xianchao, Cai, Hongmin, Teng, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499858/
https://www.ncbi.nlm.nih.gov/pubmed/37720337
http://dx.doi.org/10.1016/j.patter.2023.100806
_version_ 1785105800441626624
author Liu, Ruicun
Liu, Tuoyu
Dan, Tingting
Yang, Shan
Li, Yanbing
Luo, Boyu
Zhuang, Yingtan
Fan, Xinyue
Zhang, Xianchao
Cai, Hongmin
Teng, Yue
author_facet Liu, Ruicun
Liu, Tuoyu
Dan, Tingting
Yang, Shan
Li, Yanbing
Luo, Boyu
Zhuang, Yingtan
Fan, Xinyue
Zhang, Xianchao
Cai, Hongmin
Teng, Yue
author_sort Liu, Ruicun
collection PubMed
description Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic accuracy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment.
format Online
Article
Text
id pubmed-10499858
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104998582023-09-15 AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images Liu, Ruicun Liu, Tuoyu Dan, Tingting Yang, Shan Li, Yanbing Luo, Boyu Zhuang, Yingtan Fan, Xinyue Zhang, Xianchao Cai, Hongmin Teng, Yue Patterns (N Y) Article Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOLOv5 model is used to detect cells in a thin blood smear. An attentional aligner model (AAM) is then applied for cellular classification that consists of multi-scale features, a local context aligner, and multi-scale attention. Finally, a convolutional neural network classifier is applied for diagnosis using blood-smear images, reducing interference caused by false positive cells. The results demonstrate that AIDMAN handles interference well, with a diagnostic accuracy of 98.62% for cells and 97% for blood-smear images. The prospective clinical validation accuracy of 98.44% is comparable to that of microscopists. AIDMAN shows clinically acceptable detection of malaria parasites and could aid malaria diagnosis, especially in areas lacking experienced parasitologists and equipment. Elsevier 2023-08-03 /pmc/articles/PMC10499858/ /pubmed/37720337 http://dx.doi.org/10.1016/j.patter.2023.100806 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Liu, Ruicun
Liu, Tuoyu
Dan, Tingting
Yang, Shan
Li, Yanbing
Luo, Boyu
Zhuang, Yingtan
Fan, Xinyue
Zhang, Xianchao
Cai, Hongmin
Teng, Yue
AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title_full AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title_fullStr AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title_full_unstemmed AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title_short AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
title_sort aidman: an ai-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499858/
https://www.ncbi.nlm.nih.gov/pubmed/37720337
http://dx.doi.org/10.1016/j.patter.2023.100806
work_keys_str_mv AT liuruicun aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT liutuoyu aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT dantingting aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT yangshan aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT liyanbing aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT luoboyu aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT zhuangyingtan aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT fanxinyue aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT zhangxianchao aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT caihongmin aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages
AT tengyue aidmananaibasedobjectdetectionsystemformalariadiagnosisfromsmartphonethinbloodsmearimages