Cargando…
AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images
Malaria is a significant public health concern, with ∼95% of cases occurring in Africa, but accurate and timely diagnosis is problematic in remote and low-income areas. Here, we developed an artificial intelligence-based object detection system for malaria diagnosis (AIDMAN). In this system, the YOL...
Autores principales: | Liu, Ruicun, Liu, Tuoyu, Dan, Tingting, Yang, Shan, Li, Yanbing, Luo, Boyu, Zhuang, Yingtan, Fan, Xinyue, Zhang, Xianchao, Cai, Hongmin, Teng, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499858/ https://www.ncbi.nlm.nih.gov/pubmed/37720337 http://dx.doi.org/10.1016/j.patter.2023.100806 |
Ejemplares similares
-
Computer-Aided Rational Engineering of Signal Sensitivity of Quorum Sensing Protein LuxR in a Whole-Cell Biosensor
por: Li, Jinyu, et al.
Publicado: (2021) -
Hemoglobin SC smear recorded with a smartphone
por: Trikalinos, Nikolaos A., et al.
Publicado: (2016) -
Hybrid AI-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears
por: Zhu, Xiaohui, et al.
Publicado: (2021) -
Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears
por: Wang, Geng, et al.
Publicado: (2023) -
Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis
por: Ufuktepe, Deniz Kavzak, et al.
Publicado: (2021)