Cargando…
B-factor prediction in proteins using a sequence-based deep learning model
B factors provide critical insight into protein dynamics. Predicting B factors of an atom in new proteins remains challenging as it is impacted by their neighbors in Euclidean space. Previous learning methods developed have resulted in low Pearson correlation coefficients beyond the training set due...
Autores principales: | Pandey, Akash, Liu, Elaine, Graham, Jacob, Chen, Wei, Keten, Sinan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499862/ https://www.ncbi.nlm.nih.gov/pubmed/37720331 http://dx.doi.org/10.1016/j.patter.2023.100805 |
Ejemplares similares
-
A new approach for extracting information from protein dynamics
por: Liu, Jenny, et al.
Publicado: (2022) -
A new approach for extracting information from protein dynamics
por: Liu, Jenny, et al.
Publicado: (2022) -
Stiffness Enhancement in Nacre-Inspired Nanocomposites due to Nanoconfinement
por: Shao, Chen, et al.
Publicado: (2015) -
Deep learning program to predict protein functions based on sequence information
por: Ko, Chang Woo, et al.
Publicado: (2022) -
Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction
por: Lopez-del Rio, Angela, et al.
Publicado: (2020)