Cargando…
A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499877/ https://www.ncbi.nlm.nih.gov/pubmed/37720326 http://dx.doi.org/10.1016/j.patter.2023.100795 |
_version_ | 1785105805011320832 |
---|---|
author | Hu, Lianting Huang, Shuai Liu, Huazhang Du, Yunmei Zhao, Junfei Peng, Xiaoting Li, Dantong Chen, Xuanhui Yang, Huan Kong, Lingcong Tang, Jiajie Li, Xin Liang, Heng Liang, Huiying |
author_facet | Hu, Lianting Huang, Shuai Liu, Huazhang Du, Yunmei Zhao, Junfei Peng, Xiaoting Li, Dantong Chen, Xuanhui Yang, Huan Kong, Lingcong Tang, Jiajie Li, Xin Liang, Heng Liang, Huiying |
author_sort | Hu, Lianting |
collection | PubMed |
description | Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term “aggressive” or “bullying,” can lead to the underdiagnosis of other “vulnerable” classes. To address this issue, a method for arrhythmia diagnosis is proposed in this study. This method combines morphological-characteristic-based waveform clustering with Bayesian theory, drawing inspiration from the diagnostic reasoning of experienced cardiologists. The proposed method achieved optimal performance in macro-recall and macro-precision through hyperparameter optimization, including spliced heartbeats and clusters. In addition, with increasing bullying by aggressive arrhythmias, our model obtained the highest average recall and the lowest average drop in recall on the nine vulnerable arrhythmias. Furthermore, the maximum cluster characteristics were found to be consistent with established arrhythmia diagnostic criteria, lending interpretability to the proposed method. |
format | Online Article Text |
id | pubmed-10499877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104998772023-09-15 A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets Hu, Lianting Huang, Shuai Liu, Huazhang Du, Yunmei Zhao, Junfei Peng, Xiaoting Li, Dantong Chen, Xuanhui Yang, Huan Kong, Lingcong Tang, Jiajie Li, Xin Liang, Heng Liang, Huiying Patterns (N Y) Article Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term “aggressive” or “bullying,” can lead to the underdiagnosis of other “vulnerable” classes. To address this issue, a method for arrhythmia diagnosis is proposed in this study. This method combines morphological-characteristic-based waveform clustering with Bayesian theory, drawing inspiration from the diagnostic reasoning of experienced cardiologists. The proposed method achieved optimal performance in macro-recall and macro-precision through hyperparameter optimization, including spliced heartbeats and clusters. In addition, with increasing bullying by aggressive arrhythmias, our model obtained the highest average recall and the lowest average drop in recall on the nine vulnerable arrhythmias. Furthermore, the maximum cluster characteristics were found to be consistent with established arrhythmia diagnostic criteria, lending interpretability to the proposed method. Elsevier 2023-07-12 /pmc/articles/PMC10499877/ /pubmed/37720326 http://dx.doi.org/10.1016/j.patter.2023.100795 Text en © 2023. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Hu, Lianting Huang, Shuai Liu, Huazhang Du, Yunmei Zhao, Junfei Peng, Xiaoting Li, Dantong Chen, Xuanhui Yang, Huan Kong, Lingcong Tang, Jiajie Li, Xin Liang, Heng Liang, Huiying A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title | A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title_full | A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title_fullStr | A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title_full_unstemmed | A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title_short | A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
title_sort | cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499877/ https://www.ncbi.nlm.nih.gov/pubmed/37720326 http://dx.doi.org/10.1016/j.patter.2023.100795 |
work_keys_str_mv | AT hulianting acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT huangshuai acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT liuhuazhang acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT duyunmei acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT zhaojunfei acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT pengxiaoting acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lidantong acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT chenxuanhui acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT yanghuan acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT konglingcong acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT tangjiajie acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lixin acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT liangheng acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lianghuiying acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT hulianting cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT huangshuai cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT liuhuazhang cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT duyunmei cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT zhaojunfei cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT pengxiaoting cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lidantong cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT chenxuanhui cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT yanghuan cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT konglingcong cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT tangjiajie cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lixin cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT liangheng cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets AT lianghuiying cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets |