Cargando…

A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets

Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Lianting, Huang, Shuai, Liu, Huazhang, Du, Yunmei, Zhao, Junfei, Peng, Xiaoting, Li, Dantong, Chen, Xuanhui, Yang, Huan, Kong, Lingcong, Tang, Jiajie, Li, Xin, Liang, Heng, Liang, Huiying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499877/
https://www.ncbi.nlm.nih.gov/pubmed/37720326
http://dx.doi.org/10.1016/j.patter.2023.100795
_version_ 1785105805011320832
author Hu, Lianting
Huang, Shuai
Liu, Huazhang
Du, Yunmei
Zhao, Junfei
Peng, Xiaoting
Li, Dantong
Chen, Xuanhui
Yang, Huan
Kong, Lingcong
Tang, Jiajie
Li, Xin
Liang, Heng
Liang, Huiying
author_facet Hu, Lianting
Huang, Shuai
Liu, Huazhang
Du, Yunmei
Zhao, Junfei
Peng, Xiaoting
Li, Dantong
Chen, Xuanhui
Yang, Huan
Kong, Lingcong
Tang, Jiajie
Li, Xin
Liang, Heng
Liang, Huiying
author_sort Hu, Lianting
collection PubMed
description Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term “aggressive” or “bullying,” can lead to the underdiagnosis of other “vulnerable” classes. To address this issue, a method for arrhythmia diagnosis is proposed in this study. This method combines morphological-characteristic-based waveform clustering with Bayesian theory, drawing inspiration from the diagnostic reasoning of experienced cardiologists. The proposed method achieved optimal performance in macro-recall and macro-precision through hyperparameter optimization, including spliced heartbeats and clusters. In addition, with increasing bullying by aggressive arrhythmias, our model obtained the highest average recall and the lowest average drop in recall on the nine vulnerable arrhythmias. Furthermore, the maximum cluster characteristics were found to be consistent with established arrhythmia diagnostic criteria, lending interpretability to the proposed method.
format Online
Article
Text
id pubmed-10499877
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104998772023-09-15 A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets Hu, Lianting Huang, Shuai Liu, Huazhang Du, Yunmei Zhao, Junfei Peng, Xiaoting Li, Dantong Chen, Xuanhui Yang, Huan Kong, Lingcong Tang, Jiajie Li, Xin Liang, Heng Liang, Huiying Patterns (N Y) Article Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term “aggressive” or “bullying,” can lead to the underdiagnosis of other “vulnerable” classes. To address this issue, a method for arrhythmia diagnosis is proposed in this study. This method combines morphological-characteristic-based waveform clustering with Bayesian theory, drawing inspiration from the diagnostic reasoning of experienced cardiologists. The proposed method achieved optimal performance in macro-recall and macro-precision through hyperparameter optimization, including spliced heartbeats and clusters. In addition, with increasing bullying by aggressive arrhythmias, our model obtained the highest average recall and the lowest average drop in recall on the nine vulnerable arrhythmias. Furthermore, the maximum cluster characteristics were found to be consistent with established arrhythmia diagnostic criteria, lending interpretability to the proposed method. Elsevier 2023-07-12 /pmc/articles/PMC10499877/ /pubmed/37720326 http://dx.doi.org/10.1016/j.patter.2023.100795 Text en © 2023. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hu, Lianting
Huang, Shuai
Liu, Huazhang
Du, Yunmei
Zhao, Junfei
Peng, Xiaoting
Li, Dantong
Chen, Xuanhui
Yang, Huan
Kong, Lingcong
Tang, Jiajie
Li, Xin
Liang, Heng
Liang, Huiying
A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title_full A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title_fullStr A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title_full_unstemmed A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title_short A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
title_sort cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499877/
https://www.ncbi.nlm.nih.gov/pubmed/37720326
http://dx.doi.org/10.1016/j.patter.2023.100795
work_keys_str_mv AT hulianting acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT huangshuai acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT liuhuazhang acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT duyunmei acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT zhaojunfei acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT pengxiaoting acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lidantong acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT chenxuanhui acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT yanghuan acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT konglingcong acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT tangjiajie acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lixin acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT liangheng acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lianghuiying acardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT hulianting cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT huangshuai cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT liuhuazhang cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT duyunmei cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT zhaojunfei cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT pengxiaoting cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lidantong cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT chenxuanhui cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT yanghuan cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT konglingcong cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT tangjiajie cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lixin cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT liangheng cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets
AT lianghuiying cardiologistlikecomputeraidedinterpretationframeworktoimprovearrhythmiadiagnosisfromimbalancedtrainingdatasets