Cargando…
A cardiologist-like computer-aided interpretation framework to improve arrhythmia diagnosis from imbalanced training datasets
Arrhythmias can pose a significant threat to cardiac health, potentially leading to serious consequences such as stroke, heart failure, cardiac arrest, shock, and sudden death. In computer-aided electrocardiogram interpretation systems, the inclusion of certain classes of arrhythmias, which we term...
Autores principales: | Hu, Lianting, Huang, Shuai, Liu, Huazhang, Du, Yunmei, Zhao, Junfei, Peng, Xiaoting, Li, Dantong, Chen, Xuanhui, Yang, Huan, Kong, Lingcong, Tang, Jiajie, Li, Xin, Liang, Heng, Liang, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499877/ https://www.ncbi.nlm.nih.gov/pubmed/37720326 http://dx.doi.org/10.1016/j.patter.2023.100795 |
Ejemplares similares
-
Identification of Distinct Clinical Phenotypes of Heterogeneous Mechanically Ventilated ICU Patients Using Cluster Analysis
por: Chen, Xuanhui, et al.
Publicado: (2023) -
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
por: Gao, Junli, et al.
Publicado: (2019) -
An End-to-End Cardiac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal
por: Ullah, Hadaate, et al.
Publicado: (2022) -
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
por: Rao, Yamarthi Narasimha, et al.
Publicado: (2023) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018)