Cargando…
Strong ethanol- and frequency-dependent ecological interactions in a community of wine-fermenting yeasts
Natural wine fermentation depends on a complex consortium of native microorganisms rather than inoculation of industrial yeast strains. While this diversity of yeasts can result in an increased repertoire of wine flavors and aromas, it can also result in the inhibition of Saccharomyces cerevisiae, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499898/ https://www.ncbi.nlm.nih.gov/pubmed/37704781 http://dx.doi.org/10.1038/s42003-023-05284-1 |
Sumario: | Natural wine fermentation depends on a complex consortium of native microorganisms rather than inoculation of industrial yeast strains. While this diversity of yeasts can result in an increased repertoire of wine flavors and aromas, it can also result in the inhibition of Saccharomyces cerevisiae, which is uniquely able to complete fermentation. Understanding how yeast species interact with each other within the wine-fermenting community and disentangling ecological interactions from environmental impacts on growth rates, is key to developing synthetic communities that can provide the sensory benefits of natural fermentation while lowering the risk of stuck ferments. Here, we co-culture all pairwise combinations of five commonly isolated wine-fermenting yeasts and show that competitive outcomes are a strong function of ethanol concentration, with frequency-dependent bistable interactions common at low alcohol and an increasingly transitive competitive hierarchy developing as alcohol increases. We also show that pairwise outcomes are predictive of five-species community outcomes, and that frequency dependence in pairwise interactions propagates to alternative states in the full community, highlighting the importance of species abundance as well as composition. We also observe that monoculture growth rates are only weakly predictive of competitive success, highlighting the need to incorporate ecological interactions when designing synthetic fermenting communities. |
---|