Cargando…

Sensorimotor adaptation in spatial orientation task: a fNIRS study

In sensorimotor conflicts, the brain forms and updates a new sensorimotor relationship through sensorimotor integration. As humans adapt to new sensorimotor mapping, goal-directed movements become increasingly precise. Using functional near-infrared spectroscopy, we investigated the changes in corti...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeo, Sang Seok, Jang, Tae Su, Yun, Seong Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499899/
https://www.ncbi.nlm.nih.gov/pubmed/37704674
http://dx.doi.org/10.1038/s41598-023-42416-3
Descripción
Sumario:In sensorimotor conflicts, the brain forms and updates a new sensorimotor relationship through sensorimotor integration. As humans adapt to new sensorimotor mapping, goal-directed movements become increasingly precise. Using functional near-infrared spectroscopy, we investigated the changes in cortical activity during sensorimotor adaptation in a spatial orientation task with sensorimotor conflict. Individuals performed a reversed spatial orientation training in which the visual feedback guiding hand movements was reversed. We measured cortical activity and spatial orientation performance, including the response time, completion number, error, and accuracy. The results revealed the continuous activation in the left SMG during sensorimotor adaptation and decreased activation in the right SAC, AG and SMG after sensorimotor adaptation. These findings indicated the contribution of the left SMG to sensorimotor adaptation and the improved efficiency of cortical activity after sensorimotor adaptation, respectively. Our studies suggest the neural mechanisms related to sensorimotor adaptation to a reversed spatial orientation task.