Cargando…
scAce: an adaptive embedding and clustering method for single-cell gene expression data
MOTIVATION: Since the development of single-cell RNA sequencing (scRNA-seq) technologies, clustering analysis of single-cell gene expression data has been an essential tool for distinguishing cell types and identifying novel cell types. Even though many methods have been available for scRNA-seq clus...
Autores principales: | He, Xinwei, Qian, Kun, Wang, Ziqian, Zeng, Shirou, Li, Hongwei, Li, Wei Vivian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500084/ https://www.ncbi.nlm.nih.gov/pubmed/37672035 http://dx.doi.org/10.1093/bioinformatics/btad546 |
Ejemplares similares
-
scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
por: Qian, Kun, et al.
Publicado: (2022) -
Author Correction: scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
por: Qian, Kun, et al.
Publicado: (2022) -
scME: a dual-modality factor model for single-cell multiomics embedding
por: Zhou, Bin, et al.
Publicado: (2023) -
Sc-GPE: A Graph Partitioning-Based Cluster Ensemble Method for Single-Cell
por: Zhu, Xiaoshu, et al.
Publicado: (2020) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018)