Cargando…

Performance of ChatGPT in Diagnosis of Corneal Eye Diseases

INTRODUCTION: Assessing the capabilities of ChatGPT-4.0 and ChatGPT-3.5 for diagnosing corneal eye diseases based on case reports and compare with human experts. METHODS: We randomly selected 20 cases of corneal diseases including corneal infections, dystrophies, degenerations, and injuries from a p...

Descripción completa

Detalles Bibliográficos
Autores principales: Delsoz, Mohammad, Madadi, Yeganeh, Munir, Wuqaas M, Tamm, Brendan, Mehravaran, Shiva, Soleimani, Mohammad, Djalilian, Ali, Yousefi, Siamak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500623/
https://www.ncbi.nlm.nih.gov/pubmed/37720035
http://dx.doi.org/10.1101/2023.08.25.23294635
Descripción
Sumario:INTRODUCTION: Assessing the capabilities of ChatGPT-4.0 and ChatGPT-3.5 for diagnosing corneal eye diseases based on case reports and compare with human experts. METHODS: We randomly selected 20 cases of corneal diseases including corneal infections, dystrophies, degenerations, and injuries from a publicly accessible online database from the University of Iowa. We then input the text of each case description into ChatGPT-4.0 and ChatGPT3.5 and asked for a provisional diagnosis. We finally evaluated the responses based on the correct diagnoses then compared with the diagnoses of three cornea specialists (Human experts) and evaluated interobserver agreements. RESULTS: The provisional diagnosis accuracy based on ChatGPT-4.0 was 85% (17 correct out of 20 cases) while the accuracy of ChatGPT-3.5 was 60% (12 correct cases out of 20). The accuracy of three cornea specialists were 100% (20 cases), 90% (18 cases), and 90% (18 cases), respectively. The interobserver agreement between ChatGPT-4.0 and ChatGPT-3.5 was 65% (13 cases) while the interobserver agreement between ChatGPT-4.0 and three cornea specialists were 85% (17 cases), 80% (16 cases), and 75% (15 cases), respectively. However, the interobserver agreement between ChatGPT-3.5 and each of three cornea specialists was 60% (12 cases). CONCLUSIONS: The accuracy of ChatGPT-4.0 in diagnosing patients with various corneal conditions was markedly improved than ChatGPT-3.5 and promising for potential clinical integration.