Cargando…
Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy
OBJECTIVE: This study aims to investigate the impact of vagus nerve stimulation (VNS) on the connectivity and small-world metrics of brain functional networks during seizure periods. METHODS: Ten refractory epilepsy patients underwent video encephalographic monitoring before and after VNS treatment....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500639/ https://www.ncbi.nlm.nih.gov/pubmed/37719745 http://dx.doi.org/10.1515/tnsci-2022-0308 |
_version_ | 1785105949176889344 |
---|---|
author | Ding, Yongqiang Guo, Kunlin Wang, Xinjun Chen, Mingming Li, Xinxiao Wu, Yuehui |
author_facet | Ding, Yongqiang Guo, Kunlin Wang, Xinjun Chen, Mingming Li, Xinxiao Wu, Yuehui |
author_sort | Ding, Yongqiang |
collection | PubMed |
description | OBJECTIVE: This study aims to investigate the impact of vagus nerve stimulation (VNS) on the connectivity and small-world metrics of brain functional networks during seizure periods. METHODS: Ten refractory epilepsy patients underwent video encephalographic monitoring before and after VNS treatment. The 2-min electroencephalogram segment containing the ictal was selected for each participant, resulting in a total of 20 min of seizure data. The weighted phase lag index (wPLI) and small-world metrics were calculated for the whole frequency band and different frequency bands (delta, theta, alpha, beta, and gamma). Finally, the relevant metrics were statistically analyzed, and the false discovery rate was used to correct for differences after multiple comparisons. RESULTS: In the whole band, the wPLI was notably enhanced, and the network metrics, including degree (D), clustering coefficient (CC), and global efficiency (GE), increased, while characteristic path length (CPL) decreased (P < 0.01). In different frequency bands, the wPLI between the parieto-occipital and frontal regions was significantly strengthened in the delta and beta bands, while the wPLI within the frontal region and between the frontal and parieto-occipital regions were significantly reduced in the beta and gamma bands (P < 0.01). In the low-frequency band (<13 Hz), the small-world metrics demonstrated significantly increased CC, D, and GE, with a significantly decreased CPL, indicating a more efficient network organization. In contrast, in the gamma band, the GE decreased, and the CPL increased, suggesting a shift toward less efficient network organization. CONCLUSION: VNS treatment can significantly change the wPLI and small-world metrics. These findings contribute to a deeper understanding of the impact of VNS therapy on brain networks and provide objective indicators for evaluating the efficacy of VNS. |
format | Online Article Text |
id | pubmed-10500639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | De Gruyter |
record_format | MEDLINE/PubMed |
spelling | pubmed-105006392023-09-15 Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy Ding, Yongqiang Guo, Kunlin Wang, Xinjun Chen, Mingming Li, Xinxiao Wu, Yuehui Transl Neurosci Research Article OBJECTIVE: This study aims to investigate the impact of vagus nerve stimulation (VNS) on the connectivity and small-world metrics of brain functional networks during seizure periods. METHODS: Ten refractory epilepsy patients underwent video encephalographic monitoring before and after VNS treatment. The 2-min electroencephalogram segment containing the ictal was selected for each participant, resulting in a total of 20 min of seizure data. The weighted phase lag index (wPLI) and small-world metrics were calculated for the whole frequency band and different frequency bands (delta, theta, alpha, beta, and gamma). Finally, the relevant metrics were statistically analyzed, and the false discovery rate was used to correct for differences after multiple comparisons. RESULTS: In the whole band, the wPLI was notably enhanced, and the network metrics, including degree (D), clustering coefficient (CC), and global efficiency (GE), increased, while characteristic path length (CPL) decreased (P < 0.01). In different frequency bands, the wPLI between the parieto-occipital and frontal regions was significantly strengthened in the delta and beta bands, while the wPLI within the frontal region and between the frontal and parieto-occipital regions were significantly reduced in the beta and gamma bands (P < 0.01). In the low-frequency band (<13 Hz), the small-world metrics demonstrated significantly increased CC, D, and GE, with a significantly decreased CPL, indicating a more efficient network organization. In contrast, in the gamma band, the GE decreased, and the CPL increased, suggesting a shift toward less efficient network organization. CONCLUSION: VNS treatment can significantly change the wPLI and small-world metrics. These findings contribute to a deeper understanding of the impact of VNS therapy on brain networks and provide objective indicators for evaluating the efficacy of VNS. De Gruyter 2023-09-07 /pmc/articles/PMC10500639/ /pubmed/37719745 http://dx.doi.org/10.1515/tnsci-2022-0308 Text en © 2023 the author(s), published by De Gruyter https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. |
spellingShingle | Research Article Ding, Yongqiang Guo, Kunlin Wang, Xinjun Chen, Mingming Li, Xinxiao Wu, Yuehui Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title | Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title_full | Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title_fullStr | Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title_full_unstemmed | Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title_short | Brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
title_sort | brain functional connectivity and network characteristics changes after vagus nerve stimulation in patients with refractory epilepsy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500639/ https://www.ncbi.nlm.nih.gov/pubmed/37719745 http://dx.doi.org/10.1515/tnsci-2022-0308 |
work_keys_str_mv | AT dingyongqiang brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy AT guokunlin brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy AT wangxinjun brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy AT chenmingming brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy AT lixinxiao brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy AT wuyuehui brainfunctionalconnectivityandnetworkcharacteristicschangesaftervagusnervestimulationinpatientswithrefractoryepilepsy |