Cargando…
Marie and BERT—A Knowledge Graph Embedding Based Question Answering System for Chemistry
[Image: see text] This paper presents a novel knowledge graph question answering (KGQA) system for chemistry, which is implemented on hybrid knowledge graph embeddings, aiming to provide fact-oriented information retrieval for chemistry-related research and industrial applications. Unlike other exis...
Autores principales: | Zhou, Xiaochi, Zhang, Shaocong, Agarwal, Mehal, Akroyd, Jethro, Mosbach, Sebastian, Kraft, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500657/ https://www.ncbi.nlm.nih.gov/pubmed/37720754 http://dx.doi.org/10.1021/acsomega.3c05114 |
Ejemplares similares
-
Knowledge Graph Approach to Combustion Chemistry and
Interoperability
por: Farazi, Feroz, et al.
Publicado: (2020) -
Knowledge Engineering in Chemistry: From Expert Systems
to Agents of Creation
por: Kondinski, Aleksandar, et al.
Publicado: (2022) -
From Platform to Knowledge Graph: Evolution of Laboratory
Automation
por: Bai, Jiaru, et al.
Publicado: (2022) -
Automated Calibration of a Poly(oxymethylene) Dimethyl
Ether Oxidation Mechanism Using the Knowledge Graph Technology
por: Bai, Jiaru, et al.
Publicado: (2021) -
VGCN-BERT: Augmenting BERT with Graph Embedding for Text Classification
por: Lu, Zhibin, et al.
Publicado: (2020)