Cargando…
Enhancing the Search Performance of Bayesian Optimization by Creating Different Descriptor Datasets Using Density Functional Theory
[Image: see text] Descriptors calculated from molecular structure information can be used as explanatory variables in Bayesian optimization (BO). Even though structural and descriptor information can be obtained from various databases for general compounds, information on highly confidential compoun...
Autores principales: | Morishita, Toshiharu, Kaneko, Hiromasa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500684/ https://www.ncbi.nlm.nih.gov/pubmed/37720759 http://dx.doi.org/10.1021/acsomega.3c04891 |
Ejemplares similares
-
Initial Sample
Selection in Bayesian Optimization
for Combinatorial Optimization of Chemical Compounds
por: Morishita, Toshiharu, et al.
Publicado: (2022) -
Development of Prediction Models for the Self-Accelerating
Decomposition Temperature of Organic Peroxides
por: Morishita, Toshiharu, et al.
Publicado: (2022) -
Molecular Descriptors,
Structure Generation, and Inverse
QSAR/QSPR Based on SELFIES
por: Kaneko, Hiromasa
Publicado: (2023) -
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
por: Wang, Siwen, et al.
Publicado: (2020) -
Robust Design of
a Dimethyl Ether Production Process
Using Process Simulation and Robust Bayesian Optimization
por: Nakayama, Yuki, et al.
Publicado: (2023)