Cargando…
Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing
We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 200...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Copernicus GmbH
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500707/ https://www.ncbi.nlm.nih.gov/pubmed/37904820 http://dx.doi.org/10.5194/mr-1-165-2020 |
_version_ | 1785105966406041600 |
---|---|
author | Ginthör, Stephan J. Schlagnitweit, Judith Bechmann, Matthias Müller, Norbert |
author_facet | Ginthör, Stephan J. Schlagnitweit, Judith Bechmann, Matthias Müller, Norbert |
author_sort | Ginthör, Stephan J. |
collection | PubMed |
description | We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 2006). This proof of principle was achieved by taking advantage of the particular continuous nature of spin noise acquired in the presence of constant magnitude magnetic field gradients and recent advances in nuclear spin noise spectroscopy acquisition as well as novel processing techniques. In this type of projection–reconstruction-based spin noise imaging the trade-off between signal-to-noise ratio (or image contrast) and resolution can be adjusted a posteriori during processing of the original time-domain data by iterative image reconstruction in a unique way not possible in conventional rf-pulse-dependent magnetic resonance imaging (MRI). The 3D SNI is demonstrated as a proof of concept on a commercial 700 MHz high-resolution NMR spectrometer, using a 3D-printed polymeric phantom immersed in water. |
format | Online Article Text |
id | pubmed-10500707 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Copernicus GmbH |
record_format | MEDLINE/PubMed |
spelling | pubmed-105007072023-10-30 Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing Ginthör, Stephan J. Schlagnitweit, Judith Bechmann, Matthias Müller, Norbert Magn Reson (Gott) Research Article We report three-dimensional spin noise imaging (SNI) of nuclear spin density from spin noise data acquired by Faraday detection. Our approach substantially extends and improves the two-dimensional SNI method for excitation-less magnetic resonance tomography reported earlier (Müller and Jerschow, 2006). This proof of principle was achieved by taking advantage of the particular continuous nature of spin noise acquired in the presence of constant magnitude magnetic field gradients and recent advances in nuclear spin noise spectroscopy acquisition as well as novel processing techniques. In this type of projection–reconstruction-based spin noise imaging the trade-off between signal-to-noise ratio (or image contrast) and resolution can be adjusted a posteriori during processing of the original time-domain data by iterative image reconstruction in a unique way not possible in conventional rf-pulse-dependent magnetic resonance imaging (MRI). The 3D SNI is demonstrated as a proof of concept on a commercial 700 MHz high-resolution NMR spectrometer, using a 3D-printed polymeric phantom immersed in water. Copernicus GmbH 2020-08-06 /pmc/articles/PMC10500707/ /pubmed/37904820 http://dx.doi.org/10.5194/mr-1-165-2020 Text en Copyright: © 2020 Stephan J. Ginthör et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Article Ginthör, Stephan J. Schlagnitweit, Judith Bechmann, Matthias Müller, Norbert Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title | Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title_full | Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title_fullStr | Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title_full_unstemmed | Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title_short | Nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (SART) processing |
title_sort | nuclear spin noise tomography in three dimensions with iterative simultaneous algebraic reconstruction technique (sart) processing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500707/ https://www.ncbi.nlm.nih.gov/pubmed/37904820 http://dx.doi.org/10.5194/mr-1-165-2020 |
work_keys_str_mv | AT ginthorstephanj nuclearspinnoisetomographyinthreedimensionswithiterativesimultaneousalgebraicreconstructiontechniquesartprocessing AT schlagnitweitjudith nuclearspinnoisetomographyinthreedimensionswithiterativesimultaneousalgebraicreconstructiontechniquesartprocessing AT bechmannmatthias nuclearspinnoisetomographyinthreedimensionswithiterativesimultaneousalgebraicreconstructiontechniquesartprocessing AT mullernorbert nuclearspinnoisetomographyinthreedimensionswithiterativesimultaneousalgebraicreconstructiontechniquesartprocessing |