Cargando…
Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI
Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Copernicus GmbH
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500744/ https://www.ncbi.nlm.nih.gov/pubmed/37904884 http://dx.doi.org/10.5194/mr-1-27-2020 |
_version_ | 1785105975397580800 |
---|---|
author | de Almeida Martins, João P. Tax, Chantal M. W. Szczepankiewicz, Filip Jones, Derek K. Westin, Carl-Fredrik Topgaard, Daniel |
author_facet | de Almeida Martins, João P. Tax, Chantal M. W. Szczepankiewicz, Filip Jones, Derek K. Westin, Carl-Fredrik Topgaard, Daniel |
author_sort | de Almeida Martins, João P. |
collection | PubMed |
description | Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation–diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation–diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols. |
format | Online Article Text |
id | pubmed-10500744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Copernicus GmbH |
record_format | MEDLINE/PubMed |
spelling | pubmed-105007442023-10-30 Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI de Almeida Martins, João P. Tax, Chantal M. W. Szczepankiewicz, Filip Jones, Derek K. Westin, Carl-Fredrik Topgaard, Daniel Magn Reson (Gott) Research Article Magnetic resonance imaging (MRI) is the primary method for noninvasive investigations of the human brain in health, disease, and development but yields data that are difficult to interpret whenever the millimeter-scale voxels contain multiple microscopic tissue environments with different chemical and structural properties. We propose a novel MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional relaxation–diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation–diffusion correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with the link between microstructure and the anisotropic diffusivity of tissue water. The proposed framework is demonstrated on a healthy volunteer using both exhaustive and clinically viable acquisition protocols. Copernicus GmbH 2020-02-28 /pmc/articles/PMC10500744/ /pubmed/37904884 http://dx.doi.org/10.5194/mr-1-27-2020 Text en Copyright: © 2020 João P. de Almeida Martins et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Article de Almeida Martins, João P. Tax, Chantal M. W. Szczepankiewicz, Filip Jones, Derek K. Westin, Carl-Fredrik Topgaard, Daniel Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title | Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title_full | Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title_fullStr | Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title_full_unstemmed | Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title_short | Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI |
title_sort | transferring principles of solid-state and laplace nmr to the field of in vivo brain mri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500744/ https://www.ncbi.nlm.nih.gov/pubmed/37904884 http://dx.doi.org/10.5194/mr-1-27-2020 |
work_keys_str_mv | AT dealmeidamartinsjoaop transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri AT taxchantalmw transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri AT szczepankiewiczfilip transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri AT jonesderekk transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri AT westincarlfredrik transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri AT topgaarddaniel transferringprinciplesofsolidstateandlaplacenmrtothefieldofinvivobrainmri |