Cargando…

Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults

BACKGROUND: Since arterial flow is the leading actor in neuro-fluids flow dynamics, it might be interesting to assess whether it is meaningful to study the arterial flow waveform in more detail and whether this provides new important information. Few studies have focused on determining the influence...

Descripción completa

Detalles Bibliográficos
Autores principales: Owashi, Kimi Piedad, Capel, Cyrille, Balédent, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500860/
https://www.ncbi.nlm.nih.gov/pubmed/37705096
http://dx.doi.org/10.1186/s12987-023-00467-8
_version_ 1785106003363102720
author Owashi, Kimi Piedad
Capel, Cyrille
Balédent, Olivier
author_facet Owashi, Kimi Piedad
Capel, Cyrille
Balédent, Olivier
author_sort Owashi, Kimi Piedad
collection PubMed
description BACKGROUND: Since arterial flow is the leading actor in neuro-fluids flow dynamics, it might be interesting to assess whether it is meaningful to study the arterial flow waveform in more detail and whether this provides new important information. Few studies have focused on determining the influence of heart rate variation over time on the arterial flow curve. Therefore, this study aimed to evaluate cerebral arterial flow waveforms at extracranial and intracranial compartments in young and elderly healthy adults, also considering systole and diastole phases. METHODS: Cine phase-contrast magnetic resonance imaging (CINE-PC MRI) was performed on twenty-eight healthy young volunteers (HYV) and twenty healthy elderly volunteers (HEV) to measure arterial blood flows at the extracranial and intracranial planes. A semi-automated protocol using MATLAB scripts was implemented to identify the main representative points in the arterial flow waveforms. Representative arterial profiles were estimated for each group. Moreover, the effects of age and sex on flow times, amplitude-related parameters, and parameters related to systole and diastole phases were evaluated at the extracranial and intracranial compartments. Student’s t-test or Wilcoxon’s test (depending on the normality of the distribution) was used to detect significant differences. RESULTS: In HYVs, significant differences were observed between extracranial and intracranial levels in parameters related to the AP1 amplitude. Besides the detected differences in pulsatility index (extracranial: 0.92 ± 0.20 vs. 1.28 ± 0.33; intracranial: 0.79 ± 0.15 vs. 1.14 ± 0.18, p < .001) and average flow (715 ± 136 vs. 607 ± 125 ml/min, p = .008) between HYV and HEV, differences in the amplitude value of the arterial flow profile feature points were also noted. Contrary to systole duration (HYV: 360 ± 29 ms; HEV: 364 ± 47 ms), diastole duration presented higher inter-individual variability in both populations (HYV: 472 ± 145 ms; HEV: 456 ± 106 ms). Our results also showed that, with age, it is mainly the diastolic phase that changes. Although no significant differences in duration were observed between the two populations, the mean flow value in the diastolic phase was significantly lower in HEV (extracranial: 628 ± 128 vs. 457 ± 111 ml/min; intracranial: 599 ± 121 vs. 473 ± 100 ml/min, p < .001). No significant differences were observed in the arterial flow parameters evaluated between females and males in either HYV or HEV. CONCLUSION: Our study provides a novel contribution on the influence of the cardiac cycle phases on cerebral arterial flow. The main contribution in this study concerns the identification of age-related alterations in cerebral blood flow, which occur mainly during the diastolic phase. Specifically, we observed that mean flow significantly decreases with age during diastole, whereas mean flow during systole is consistent.
format Online
Article
Text
id pubmed-10500860
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-105008602023-09-15 Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults Owashi, Kimi Piedad Capel, Cyrille Balédent, Olivier Fluids Barriers CNS Research BACKGROUND: Since arterial flow is the leading actor in neuro-fluids flow dynamics, it might be interesting to assess whether it is meaningful to study the arterial flow waveform in more detail and whether this provides new important information. Few studies have focused on determining the influence of heart rate variation over time on the arterial flow curve. Therefore, this study aimed to evaluate cerebral arterial flow waveforms at extracranial and intracranial compartments in young and elderly healthy adults, also considering systole and diastole phases. METHODS: Cine phase-contrast magnetic resonance imaging (CINE-PC MRI) was performed on twenty-eight healthy young volunteers (HYV) and twenty healthy elderly volunteers (HEV) to measure arterial blood flows at the extracranial and intracranial planes. A semi-automated protocol using MATLAB scripts was implemented to identify the main representative points in the arterial flow waveforms. Representative arterial profiles were estimated for each group. Moreover, the effects of age and sex on flow times, amplitude-related parameters, and parameters related to systole and diastole phases were evaluated at the extracranial and intracranial compartments. Student’s t-test or Wilcoxon’s test (depending on the normality of the distribution) was used to detect significant differences. RESULTS: In HYVs, significant differences were observed between extracranial and intracranial levels in parameters related to the AP1 amplitude. Besides the detected differences in pulsatility index (extracranial: 0.92 ± 0.20 vs. 1.28 ± 0.33; intracranial: 0.79 ± 0.15 vs. 1.14 ± 0.18, p < .001) and average flow (715 ± 136 vs. 607 ± 125 ml/min, p = .008) between HYV and HEV, differences in the amplitude value of the arterial flow profile feature points were also noted. Contrary to systole duration (HYV: 360 ± 29 ms; HEV: 364 ± 47 ms), diastole duration presented higher inter-individual variability in both populations (HYV: 472 ± 145 ms; HEV: 456 ± 106 ms). Our results also showed that, with age, it is mainly the diastolic phase that changes. Although no significant differences in duration were observed between the two populations, the mean flow value in the diastolic phase was significantly lower in HEV (extracranial: 628 ± 128 vs. 457 ± 111 ml/min; intracranial: 599 ± 121 vs. 473 ± 100 ml/min, p < .001). No significant differences were observed in the arterial flow parameters evaluated between females and males in either HYV or HEV. CONCLUSION: Our study provides a novel contribution on the influence of the cardiac cycle phases on cerebral arterial flow. The main contribution in this study concerns the identification of age-related alterations in cerebral blood flow, which occur mainly during the diastolic phase. Specifically, we observed that mean flow significantly decreases with age during diastole, whereas mean flow during systole is consistent. BioMed Central 2023-09-13 /pmc/articles/PMC10500860/ /pubmed/37705096 http://dx.doi.org/10.1186/s12987-023-00467-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Owashi, Kimi Piedad
Capel, Cyrille
Balédent, Olivier
Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title_full Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title_fullStr Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title_full_unstemmed Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title_short Cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
title_sort cerebral arterial flow dynamics during systole and diastole phases in young and older healthy adults
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500860/
https://www.ncbi.nlm.nih.gov/pubmed/37705096
http://dx.doi.org/10.1186/s12987-023-00467-8
work_keys_str_mv AT owashikimipiedad cerebralarterialflowdynamicsduringsystoleanddiastolephasesinyoungandolderhealthyadults
AT capelcyrille cerebralarterialflowdynamicsduringsystoleanddiastolephasesinyoungandolderhealthyadults
AT baledentolivier cerebralarterialflowdynamicsduringsystoleanddiastolephasesinyoungandolderhealthyadults