Cargando…

LYZ2-SH3b as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus

BACKGROUND: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain f...

Descripción completa

Detalles Bibliográficos
Autores principales: Asadi, Marzieh, Taheri-Anganeh, Mortaza, Ranjbar, Maryam, Khatami, Seyyed Hossein, Maleksabet, Amir, Mostafavi-Pour, Zohreh, Ghasemi, Younes, Keshavarzi, Abdolkhalegh, Savardashtaki, Amir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500863/
https://www.ncbi.nlm.nih.gov/pubmed/37704938
http://dx.doi.org/10.1186/s12866-023-03002-9
Descripción
Sumario:BACKGROUND: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS: This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS: Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS: The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-03002-9.