Cargando…

Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes

[Image: see text] Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fitzhugh, Henry C., Furness, James W., Pederson, Mark R., Peralta, Juan E., Sun, Jianwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500985/
https://www.ncbi.nlm.nih.gov/pubmed/37582098
http://dx.doi.org/10.1021/acs.jctc.3c00336
_version_ 1785106032340500480
author Fitzhugh, Henry C.
Furness, James W.
Pederson, Mark R.
Peralta, Juan E.
Sun, Jianwei
author_facet Fitzhugh, Henry C.
Furness, James W.
Pederson, Mark R.
Peralta, Juan E.
Sun, Jianwei
author_sort Fitzhugh, Henry C.
collection PubMed
description [Image: see text] Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r(2)SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew–Burke–Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r(2)SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error.
format Online
Article
Text
id pubmed-10500985
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105009852023-09-15 Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes Fitzhugh, Henry C. Furness, James W. Pederson, Mark R. Peralta, Juan E. Sun, Jianwei J Chem Theory Comput [Image: see text] Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r(2)SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew–Burke–Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r(2)SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error. American Chemical Society 2023-08-15 /pmc/articles/PMC10500985/ /pubmed/37582098 http://dx.doi.org/10.1021/acs.jctc.3c00336 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Fitzhugh, Henry C.
Furness, James W.
Pederson, Mark R.
Peralta, Juan E.
Sun, Jianwei
Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title_full Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title_fullStr Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title_full_unstemmed Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title_short Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes
title_sort comparative density functional theory study of magnetic exchange couplings in dinuclear transition-metal complexes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500985/
https://www.ncbi.nlm.nih.gov/pubmed/37582098
http://dx.doi.org/10.1021/acs.jctc.3c00336
work_keys_str_mv AT fitzhughhenryc comparativedensityfunctionaltheorystudyofmagneticexchangecouplingsindinucleartransitionmetalcomplexes
AT furnessjamesw comparativedensityfunctionaltheorystudyofmagneticexchangecouplingsindinucleartransitionmetalcomplexes
AT pedersonmarkr comparativedensityfunctionaltheorystudyofmagneticexchangecouplingsindinucleartransitionmetalcomplexes
AT peraltajuane comparativedensityfunctionaltheorystudyofmagneticexchangecouplingsindinucleartransitionmetalcomplexes
AT sunjianwei comparativedensityfunctionaltheorystudyofmagneticexchangecouplingsindinucleartransitionmetalcomplexes