Cargando…

Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes

New nickel(ii), palladium(ii), and platinum(iv) complexes were synthesized by reacting the metal ions with benzidinedioxime in a 1 : 1 mole ratio. The CHN elemental analysis, spectroscopic analyses, and powder X-ray diffraction (PXRD) results showed that two Ni(ii) and two Pd(ii) ions coordinated to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebrahim, Reem M. A., Abdelbagi, Abubakar, Sulfab, Yousif, Hamdi, Omer Abdalla Ahmed, Shokri, Samah A., Ali, Elmugdad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501048/
https://www.ncbi.nlm.nih.gov/pubmed/37720836
http://dx.doi.org/10.1039/d3ra04768g
_version_ 1785106041807044608
author Ebrahim, Reem M. A.
Abdelbagi, Abubakar
Sulfab, Yousif
Hamdi, Omer Abdalla Ahmed
Shokri, Samah A.
Ali, Elmugdad A.
author_facet Ebrahim, Reem M. A.
Abdelbagi, Abubakar
Sulfab, Yousif
Hamdi, Omer Abdalla Ahmed
Shokri, Samah A.
Ali, Elmugdad A.
author_sort Ebrahim, Reem M. A.
collection PubMed
description New nickel(ii), palladium(ii), and platinum(iv) complexes were synthesized by reacting the metal ions with benzidinedioxime in a 1 : 1 mole ratio. The CHN elemental analysis, spectroscopic analyses, and powder X-ray diffraction (PXRD) results showed that two Ni(ii) and two Pd(ii) ions coordinated to two benzidinedioxime ligands via the nitrogen atoms of both oxime groups and the two azomethine nitrogen atoms. In the case of the dinuclear platinum(iv) complex, however, each Pt(iv) is coordinated with the two oxygen atoms of the oxime group and the two azomethine nitrogen atoms of the ligand. Both elemental analyses and PXRD indicated that the complex ions of Ni(ii) and Pt(iv) have distorted octahedral geometry, whereas Pd(ii) has a square planar geometry. Molecular docking studies showed that the nickel(ii) complex is the most potent dual DHPS/DHFR bacterial inhibitor. The receptor of the DHPS enzyme (3ZTE) showed the best interaction with the nickel(ii) complex when compared to a receptor of the DHFR enzyme (3FRB). All the synthesized complexes and ligand exhibited significant results against PS. Aeruginous than their corresponding SMX–TMP drug. Among the three synthesized complexes, the nickel(ii) complex possessed the highest antimicrobial activities against tested microorganisms.
format Online
Article
Text
id pubmed-10501048
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-105010482023-09-15 Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes Ebrahim, Reem M. A. Abdelbagi, Abubakar Sulfab, Yousif Hamdi, Omer Abdalla Ahmed Shokri, Samah A. Ali, Elmugdad A. RSC Adv Chemistry New nickel(ii), palladium(ii), and platinum(iv) complexes were synthesized by reacting the metal ions with benzidinedioxime in a 1 : 1 mole ratio. The CHN elemental analysis, spectroscopic analyses, and powder X-ray diffraction (PXRD) results showed that two Ni(ii) and two Pd(ii) ions coordinated to two benzidinedioxime ligands via the nitrogen atoms of both oxime groups and the two azomethine nitrogen atoms. In the case of the dinuclear platinum(iv) complex, however, each Pt(iv) is coordinated with the two oxygen atoms of the oxime group and the two azomethine nitrogen atoms of the ligand. Both elemental analyses and PXRD indicated that the complex ions of Ni(ii) and Pt(iv) have distorted octahedral geometry, whereas Pd(ii) has a square planar geometry. Molecular docking studies showed that the nickel(ii) complex is the most potent dual DHPS/DHFR bacterial inhibitor. The receptor of the DHPS enzyme (3ZTE) showed the best interaction with the nickel(ii) complex when compared to a receptor of the DHFR enzyme (3FRB). All the synthesized complexes and ligand exhibited significant results against PS. Aeruginous than their corresponding SMX–TMP drug. Among the three synthesized complexes, the nickel(ii) complex possessed the highest antimicrobial activities against tested microorganisms. The Royal Society of Chemistry 2023-09-14 /pmc/articles/PMC10501048/ /pubmed/37720836 http://dx.doi.org/10.1039/d3ra04768g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ebrahim, Reem M. A.
Abdelbagi, Abubakar
Sulfab, Yousif
Hamdi, Omer Abdalla Ahmed
Shokri, Samah A.
Ali, Elmugdad A.
Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title_full Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title_fullStr Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title_full_unstemmed Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title_short Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
title_sort synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501048/
https://www.ncbi.nlm.nih.gov/pubmed/37720836
http://dx.doi.org/10.1039/d3ra04768g
work_keys_str_mv AT ebrahimreemma synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes
AT abdelbagiabubakar synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes
AT sulfabyousif synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes
AT hamdiomerabdallaahmed synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes
AT shokrisamaha synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes
AT alielmugdada synthesischaracterizationmoleculardockingandantimicrobialactivitiesofdinuclearnickeliipalladiumiiandplatinumivcomplexes