Cargando…
Computing Persistent Homology by Spanning Trees and Critical Simplices
Topological data analysis can extract effective information from higher-dimensional data. Its mathematical basis is persistent homology. The persistent homology can calculate topological features at different spatiotemporal scales of the dataset, that is, establishing the integrated taxonomic relati...
Autores principales: | Shi, Dinghua, Chen, Zhifeng, Ma, Chuang, Chen, Guanrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501364/ https://www.ncbi.nlm.nih.gov/pubmed/37719051 http://dx.doi.org/10.34133/research.0230 |
Ejemplares similares
-
Persistent Singultus: Addressing Complexity With Simplicity
por: Patel, Nidhi, et al.
Publicado: (2015) -
Simplicity
por: Sober, Elliott
Publicado: (1975) -
Simplicial networks: a powerful tool for characterizing higher-order interactions
por: Shi, Dinghua, et al.
Publicado: (2022) -
Totally homogeneous networks
por: Shi, Dinghua, et al.
Publicado: (2019) -
On the Number of Spanning Trees of Graphs
por: Bozkurt, Ş. Burcu, et al.
Publicado: (2014)