Cargando…
An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer's disease
The advent of eXplainable Artificial Intelligence (XAI) has revolutionized the way human experts, especially from non-computational domains, approach artificial intelligence; this is particularly true for clinical applications where the transparency of the results is often compromised by the algorit...
Autores principales: | Amoroso, Nicola, Quarto, Silvano, La Rocca, Marianna, Tangaro, Sabina, Monaco, Alfonso, Bellotti, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501457/ https://www.ncbi.nlm.nih.gov/pubmed/37719873 http://dx.doi.org/10.3389/fnagi.2023.1238065 |
Ejemplares similares
-
Worldwide impact of lifestyle predictors of dementia prevalence: An eXplainable Artificial Intelligence analysis
por: Bellantuono, Loredana, et al.
Publicado: (2022) -
Detecting the socio-economic drivers of confidence in government with eXplainable Artificial Intelligence
por: Bellantuono, Loredana, et al.
Publicado: (2023) -
An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
por: Bellantuono, Loredana, et al.
Publicado: (2023) -
Alzheimer’s disease diagnosis based on the Hippocampal Unified Multi-Atlas Network (HUMAN) algorithm
por: Amoroso, Nicola, et al.
Publicado: (2018) -
Multivariate regression analysis of structural MRI connectivity matrices in Alzheimer’s disease
por: Rasero, Javier, et al.
Publicado: (2017)