Cargando…

Dynamical behavior of chaos, bifurcation analysis and soliton solutions to a Konno-Onno model

The fractional coupled Konno-Onno model, which is frequently used in numerous fields of scientific and engineering disciplines, is being investigated in the current study in order to gain an understanding of complex phenomena and systems. The two main goals of this study are to be accomplished. Firs...

Descripción completa

Detalles Bibliográficos
Autores principales: Chahlaoui, Younes, Ali, Asghar, Ahmad, Jamshad, Javed, Sara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501596/
https://www.ncbi.nlm.nih.gov/pubmed/37708162
http://dx.doi.org/10.1371/journal.pone.0291197
Descripción
Sumario:The fractional coupled Konno-Onno model, which is frequently used in numerous fields of scientific and engineering disciplines, is being investigated in the current study in order to gain an understanding of complex phenomena and systems. The two main goals of this study are to be accomplished. Firstly, the research aims to identify novel solitons for the fractional coupled Konno-Onno model using the unified technique, which is currently absent from the literature. Secondly, a novel strategy that hasn’t been previously investigated is phase portrait analysis for both perturbed and non-perturbed dynamical systems. The current study uses appropriate parametric values in phase plane analysis, 2D, 3D, and density plots to ensure the results are physically compatible. The results validate the claim that the technique used in this research to produce complete and uniform responses is not only simple to use and effective, but also substantially faster in computing. The technique is useful for resolving more complex phenomena that arise in engineering and mathematical physics.