Cargando…
Patient Identification Based on Deep Metric Learning for Preventing Human Errors in Follow-up X-Ray Examinations
Biological fingerprints extracted from clinical images can be used for patient identity verification to determine misfiled clinical images in picture archiving and communication systems. However, such methods have not been incorporated into clinical use, and their performance can degrade with variab...
Autores principales: | Ueda, Yasuyuki, Morishita, Junji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501972/ https://www.ncbi.nlm.nih.gov/pubmed/37308675 http://dx.doi.org/10.1007/s10278-023-00850-9 |
Ejemplares similares
-
A cross-modal deep metric learning model for disease diagnosis based on chest x-ray images
por: Jin, Yufei, et al.
Publicado: (2023) -
Enhancing deep-learning training for phase identification in powder X-ray diffractograms
por: Schuetzke, Jan, et al.
Publicado: (2021) -
X-Ray Examination of the Stomach
por: Wilson, Hugh M.
Publicado: (1944) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023) -
An Overview of Deep Learning Techniques on Chest X-Ray and CT Scan Identification of COVID-19
por: Serena Low, Woan Ching, et al.
Publicado: (2021)