Cargando…
An AI-Based Image Quality Control Framework for Knee Radiographs
Image quality control (QC) is crucial for the accurate diagnosis of knee diseases using radiographs. However, the manual QC process is subjective, labor intensive, and time-consuming. In this study, we aimed to develop an artificial intelligence (AI) model to automate the QC procedure typically perf...
Autores principales: | Sun, Hongbiao, Wang, Wenwen, He, Fujin, Wang, Duanrui, Liu, Xiaoqing, Xu, Shaochun, Zhao, Baolian, Li, Qingchu, Wang, Xiang, Jiang, Qinling, Zhang, Rong, Liu, Shiyuan, Xiao, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501977/ https://www.ncbi.nlm.nih.gov/pubmed/37268840 http://dx.doi.org/10.1007/s10278-023-00853-6 |
Ejemplares similares
-
Automated Rib Fracture Detection on Chest X-Ray Using Contrastive Learning
por: Sun, Hongbiao, et al.
Publicado: (2023) -
Can peritumoral regions increase the efficiency of machine-learning prediction of pathological invasiveness in lung adenocarcinoma manifesting as ground-glass nodules?
por: Wang, Xiang, et al.
Publicado: (2021) -
An Explainable AI-Enabled Framework for Interpreting Pulmonary Diseases from Chest Radiographs
por: Naz, Zubaira, et al.
Publicado: (2023) -
An AI-based algorithm for the automatic evaluation of image quality in canine thoracic radiographs
por: Banzato, Tommaso, et al.
Publicado: (2023) -
Comparison of Radiographic Postoperative Outcomes Between Males and Females With AIS
por: Xu, Ximing, et al.
Publicado: (2015)