Cargando…
Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images
Deep neural networks (DNNs) have recently showed remarkable performance in various computer vision tasks, including classification and segmentation of medical images. Deep ensembles (an aggregated prediction of multiple DNNs) were shown to improve a DNN’s performance in various classification tasks....
Autores principales: | Petrov, Yury, Malik, Bilal, Fredrickson, Jill, Jemaa, Skander, Carano, Richard A. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502003/ https://www.ncbi.nlm.nih.gov/pubmed/37291384 http://dx.doi.org/10.1007/s10278-023-00857-2 |
Ejemplares similares
-
Heart and bladder detection and segmentation on FDG PET/CT by deep learning
por: Wang, Xiaoyong, et al.
Publicado: (2022) -
Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks
por: Jemaa, Skander, et al.
Publicado: (2020) -
Decoding Physics Information in DNNs
por: Cheng, Taoli
Publicado: (2019) -
Fast Calorimeter Simulation in ATLAS with DNNs
por: Golling, Tobias, et al.
Publicado: (2020) -
Convergence Behavior of DNNs with Mutual-Information-Based Regularization
por: Jónsson, Hlynur, et al.
Publicado: (2020)