Cargando…
Multi-agent learning via gradient ascent activity-based credit assignment
We consider the situation in which cooperating agents learn to achieve a common goal based solely on a global return that results from all agents’ behavior. The method proposed is based on taking into account the agents’ activity, which can be any additional information to help solving multi-agent d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502029/ https://www.ncbi.nlm.nih.gov/pubmed/37709830 http://dx.doi.org/10.1038/s41598-023-42448-9 |
Sumario: | We consider the situation in which cooperating agents learn to achieve a common goal based solely on a global return that results from all agents’ behavior. The method proposed is based on taking into account the agents’ activity, which can be any additional information to help solving multi-agent decentralized learning problems. We propose a gradient ascent algorithm and assess its performance on synthetic data. |
---|