Cargando…
A translational perspective towards clinical AI fairness
Artificial intelligence (AI) has demonstrated the ability to extract insights from data, but the fairness of such data-driven insights remains a concern in high-stakes fields. Despite extensive developments, issues of AI fairness in clinical contexts have not been adequately addressed. A fair model...
Autores principales: | Liu, Mingxuan, Ning, Yilin, Teixayavong, Salinelat, Mertens, Mayli, Xu, Jie, Ting, Daniel Shu Wei, Cheng, Lionel Tim-Ee, Ong, Jasmine Chiat Ling, Teo, Zhen Ling, Tan, Ting Fang, RaviChandran, Narrendar, Wang, Fei, Celi, Leo Anthony, Ong, Marcus Eng Hock, Liu, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502051/ https://www.ncbi.nlm.nih.gov/pubmed/37709945 http://dx.doi.org/10.1038/s41746-023-00918-4 |
Ejemplares similares
-
AI and machine learning in resuscitation: Ongoing research, new concepts, and key challenges
por: Okada, Yohei, et al.
Publicado: (2023) -
AI Models to Assist Vancomycin Dosage Titration
por: Wang, Zhiyu, et al.
Publicado: (2022) -
Conformable Electrode Arrays for Wearable Neuroprostheses
por: RaviChandran, Narrendar, et al.
Publicado: (2023) -
AI Fairness
por: Mahoney, Trisha
Publicado: (2020) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023)