Cargando…
Purification and biological analysis of antimicrobial compound produced by an endophytic Streptomyces sp.
Fungal phytopathogens and drug-resistant bacteria are two significant challenges in agriculture and public health, respectively. As a result, new sources of antimicrobial compounds are urgently needed. Taking into consideration these aspects, the present study was carried out to explore the antimicr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502074/ https://www.ncbi.nlm.nih.gov/pubmed/37709816 http://dx.doi.org/10.1038/s41598-023-41296-x |
Sumario: | Fungal phytopathogens and drug-resistant bacteria are two significant challenges in agriculture and public health, respectively. As a result, new sources of antimicrobial compounds are urgently needed. Taking into consideration these aspects, the present study was carried out to explore the antimicrobial activity of Streptomyces sp. SP5 against drug-resistant bacteria, especially methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococcus and fungal phytopathogens. MRSA and VRE are both types of antibiotic-resistant bacteria that pose significant challenges to public health. In vitro analysis of the metabolites of Streptomyces sp. SP5 exhibited broad-spectrum antimicrobial activity against drug-resistant bacteria and phytopathogenic fungi. Further chemical investigation of the diethyl ether extract led to the isolation and purification of an antimicrobial compound. The structure of the purified compound was elucidated by performing detailed spectroscopic analysis including MS, IR, and NMR. The compound was identified as plicacetin. Plicacetin is a nucleoside antibiotic that has been reported for antibacterial activity against Gram-positive bacterium Mycobacterium tuberculosis. According to our knowledge, the present study is the first to demonstrate the antimicrobial properties of plicacetin against Fusarium oxysporum, Alternaria brassicicola, Fusarium solani, VRE and Bacillus subtilis. The outcome of the current study endorses that compound produced by Streptomyces sp. SP5 can be used as an antimicrobial agent against fungal phytopathogens and drug-resistant bacteria. |
---|