Cargando…
Enhanced machine learning—ensemble method for estimation of oil formation volume factor at reservoir conditions
Since the oil formation volume factor (B(o)) is crucial for various calculations in petroleum engineering, such as estimating original oil in place, fluid flow in the porous reservoir medium, and production from wells, this parameter is predicted using conventional methods including experimental tes...
Autores principales: | Kharazi Esfahani, Parsa, Peiro Ahmady Langeroudy, Kiana, Khorsand Movaghar, Mohammad Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502101/ https://www.ncbi.nlm.nih.gov/pubmed/37709847 http://dx.doi.org/10.1038/s41598-023-42469-4 |
Ejemplares similares
-
Enhanced intelligent approach for determination of crude oil viscosity at reservoir conditions
por: Peiro Ahmady Langeroudy, Kiana, et al.
Publicado: (2023) -
Prediction of electrostatic properties of reservoir rock in low salinity water injection into carbonate reservoirs
por: Parvazdavani, Mohammad, et al.
Publicado: (2023) -
Study on Pressure Propagation in Tight Oil Reservoirs
with Stimulated Reservoir Volume Development
por: Zhu, Weiyao, et al.
Publicado: (2021) -
Numerical analysis of pore-scale CO(2)-EOR at near-miscible flow condition to perceive the displacement mechanism
por: Behnoud, Parisa, et al.
Publicado: (2023) -
Critical temperature shift modeling of confined fluids using pore-size-dependent energy parameter of potential function
por: Humand, Mohammad, et al.
Publicado: (2023)