Cargando…

Influence of silicon nano-particles on Avena sativa L. to alleviate the biotic stress of Rhizoctonia solani

Avena sativa L. a cereal crop that is badly affected by several abiotic and biotic stresses. In the current study, silicon nanoparticles are used to mitigate the harmful effects of root rot disease caused by Rhizoctonia solani Kuhn on the growth of A. sativa. In vitro (Petri plates) and in vivo (pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Faiza, Jabeen, Khajista, Iqbal, Sumera, Umar, Aisha, Ameen, Fuad, Gancarz, Marek, Eldin Darwish, Doaa Bahaa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502127/
https://www.ncbi.nlm.nih.gov/pubmed/37709782
http://dx.doi.org/10.1038/s41598-023-41699-w
Descripción
Sumario:Avena sativa L. a cereal crop that is badly affected by several abiotic and biotic stresses. In the current study, silicon nanoparticles are used to mitigate the harmful effects of root rot disease caused by Rhizoctonia solani Kuhn on the growth of A. sativa. In vitro (Petri plates) and in vivo (pots experiment) were performed to measure the various physiological and biochemical parameters i.e. osmotic potential, chlorophyll, proline content, growth parameters, sugar, fresh and dry weight, and disease index. Results revealed that physiological and biochemical parameters were reduced under fungal stress with silicon nanoparticles treatment as compared to the control group. Si nanoparticles helped to alleviate the negative effects caused by fungus i.e. germination percentage upto 80%, germination rate 4 n/d, radical and plumule length was 4.02 and 5.46, dry weight 0.08 g, and relative water content was (50.3%) increased. Fungus + Si treatment showed the maximum protein content, i.e. 1.2 µg/g as compared to Fungus (0.3 µg/g) treated group. The DI was maximum (78.82%) when the fungus directly attacked the target plant and DI reduced (44.2%) when the fungus was treated with Si nanoparticles. Thus, silicon nanoparticles were potentially effective against the stress of R. solani and also used to analyze the plant resistance against fungal diseases. These particles can use as silicon fertilizers, but further studies on their efficacy under field conditions and improvement in their synthesis are still needed.