Cargando…

PyDESeq2: a python package for bulk RNA-seq differential expression analysis

SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Muzellec, Boris, Teleńczuk, Maria, Cabeli, Vincent, Andreux, Mathieu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502239/
https://www.ncbi.nlm.nih.gov/pubmed/37669147
http://dx.doi.org/10.1093/bioinformatics/btad547
_version_ 1785106277632835584
author Muzellec, Boris
Teleńczuk, Maria
Cabeli, Vincent
Andreux, Mathieu
author_facet Muzellec, Boris
Teleńczuk, Maria
Cabeli, Vincent
Andreux, Mathieu
author_sort Muzellec, Boris
collection PubMed
description SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools. AVAILABILITY AND IMPLEMENTATION: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse ecosystem.
format Online
Article
Text
id pubmed-10502239
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105022392023-09-16 PyDESeq2: a python package for bulk RNA-seq differential expression analysis Muzellec, Boris Teleńczuk, Maria Cabeli, Vincent Andreux, Mathieu Bioinformatics Applications Note SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools. AVAILABILITY AND IMPLEMENTATION: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse ecosystem. Oxford University Press 2023-09-05 /pmc/articles/PMC10502239/ /pubmed/37669147 http://dx.doi.org/10.1093/bioinformatics/btad547 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Note
Muzellec, Boris
Teleńczuk, Maria
Cabeli, Vincent
Andreux, Mathieu
PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title_full PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title_fullStr PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title_full_unstemmed PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title_short PyDESeq2: a python package for bulk RNA-seq differential expression analysis
title_sort pydeseq2: a python package for bulk rna-seq differential expression analysis
topic Applications Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502239/
https://www.ncbi.nlm.nih.gov/pubmed/37669147
http://dx.doi.org/10.1093/bioinformatics/btad547
work_keys_str_mv AT muzellecboris pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis
AT telenczukmaria pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis
AT cabelivincent pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis
AT andreuxmathieu pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis