Cargando…
PyDESeq2: a python package for bulk RNA-seq differential expression analysis
SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in exp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502239/ https://www.ncbi.nlm.nih.gov/pubmed/37669147 http://dx.doi.org/10.1093/bioinformatics/btad547 |
_version_ | 1785106277632835584 |
---|---|
author | Muzellec, Boris Teleńczuk, Maria Cabeli, Vincent Andreux, Mathieu |
author_facet | Muzellec, Boris Teleńczuk, Maria Cabeli, Vincent Andreux, Mathieu |
author_sort | Muzellec, Boris |
collection | PubMed |
description | SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools. AVAILABILITY AND IMPLEMENTATION: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse ecosystem. |
format | Online Article Text |
id | pubmed-10502239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105022392023-09-16 PyDESeq2: a python package for bulk RNA-seq differential expression analysis Muzellec, Boris Teleńczuk, Maria Cabeli, Vincent Andreux, Mathieu Bioinformatics Applications Note SUMMARY: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data. This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools. AVAILABILITY AND IMPLEMENTATION: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse ecosystem. Oxford University Press 2023-09-05 /pmc/articles/PMC10502239/ /pubmed/37669147 http://dx.doi.org/10.1093/bioinformatics/btad547 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Note Muzellec, Boris Teleńczuk, Maria Cabeli, Vincent Andreux, Mathieu PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title | PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title_full | PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title_fullStr | PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title_full_unstemmed | PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title_short | PyDESeq2: a python package for bulk RNA-seq differential expression analysis |
title_sort | pydeseq2: a python package for bulk rna-seq differential expression analysis |
topic | Applications Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502239/ https://www.ncbi.nlm.nih.gov/pubmed/37669147 http://dx.doi.org/10.1093/bioinformatics/btad547 |
work_keys_str_mv | AT muzellecboris pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis AT telenczukmaria pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis AT cabelivincent pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis AT andreuxmathieu pydeseq2apythonpackageforbulkrnaseqdifferentialexpressionanalysis |