Cargando…
Data-driven multi-objective optimization for electric vehicle charging infrastructure
This paper presents a data-driven methodology combining simulation and multi-objective optimization to efficiently implement transportation policy commitments, using as a case study the electric vehicle (EV) charging infrastructure in Newcastle upon Tyne, United Kingdom. The methodology leverages a...
Autores principales: | Farhadi, Farzaneh, Wang, Shixiao, Palacin, Roberto, Blythe, Phil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502409/ https://www.ncbi.nlm.nih.gov/pubmed/37720110 http://dx.doi.org/10.1016/j.isci.2023.107737 |
Ejemplares similares
-
Resilience of urban public electric vehicle charging infrastructure to flooding
por: Raman, Gururaghav, et al.
Publicado: (2022) -
Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure
por: Chung, Ching-Yen, et al.
Publicado: (2014) -
Data and material of the Safe-Range-Inventory: An assistance tool helping to improve the charging infrastructure for electric vehicles
por: Carbon, Claus-Christian, et al.
Publicado: (2017) -
Multi-Objective Evolutionary Design of an Electric Vehicle Chassis
por: Luque, Pablo, et al.
Publicado: (2020) -
Optimal charging control of electric vehicles in smart grids
por: Tang, Wanrong, et al.
Publicado: (2017)